太阳能能源预测的深度学习方法
1. 预测程序与数据收集
在太阳能能源预测中,有一种预测程序是直接外推主θ线,同时利用基本指数平滑(SES)外推后续线。之后,将两条θ线确定的时间序列通过等权重进行合并,从而得到特定时间序列数据集的最终预测结果。
数据收集系统包含五个阶段:信息收集、数据预处理、交叉验证(CV)、十次交叉验证和子集确定。信息收集阶段从四个数据源收集信息,具体如下:
- 太阳能发电数据 :由韩国开放信息入口(http://www.data.go.kr)提供,数据来自韩国南部的灵岩地区,时间范围是2013年1月1日至2015年12月31日,以1小时为时间间隔。
- 太阳高度数据 :由天文馆软件Stellarium(http://www.stellarium.org)提供,取自灵岩发电厂的地理位置,该数据代表从发电厂视角看太阳在经纬度上的位置。
- 观测气象记录 :由韩国气象厅(KMA,http://kma.go.kr)提供,是实际测量的真实气象数据,取自距离光伏电站约8.5公里的木浦最近气象站。
- 气象预报记录 :同样由KMA提供,以3小时为时间间隔,从每天凌晨2:00开始,本研究中使用的是提前36小时的预报数据。
KMA使用的气象观测系统包括一个10米高的气象塔。塔顶左右两侧水平安装风向和风速传感器,地面上方1.5米处安装湿度和温度仪,另一侧安装降水传感器,地面上方约50 - 60厘米处安装压力传感器。
2. 模型视图
文献中有多种模型