数值算法解析
1 素性测试(Primality Test)
素性测试是一种用于确定给定整数是否为质数的算法。质数是只能被1和自身整除的自然数,例如2、5、7和13都是质数,而6不是,因为它可以分解为2和3的乘积。为了提高算法效率,通常使用该数的平方根作为上限,因为如果一个数不是质数,其因子必然出现在2到该数平方根之间。
1.1 算法逻辑
素性测试的伪代码如下:
algorithm IsPrime(n)
Post: n is determined to be a prime or not
for i <- 2 to sqrt(n) do
if n % i == 0
return false
end for
return true
1.2 流程说明
- 初始化 :从2开始遍历到
sqrt(n)
。 - 检查因子 :如果
n
能被任意一个数整除,则返回false
。 - 返回结果 :如果遍历结束后没有找到任何因子,则返回
true
。
2 基数转换(Base Conversions)
基数转换算法用于将一个十进制数转换为其他进制(如二进制、八进制或十六进制)。例如,7