机器学习——凸优化

本文探讨了机器学习算法中的最优化问题,解释了为何在凸函数或凹函数基础上进行最优化较为常见。文中详细介绍了如何判断函数的凸凹性,并列举了多种常见函数类型及其属性,包括线性规划、二次规划等最优化问题,以及梯度上升、牛顿法等优化手段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在很多机器学习算法中,都会遇到最优化问题。因为我们机器学习算法,就是要在模型空间中找到这样一个模型,使得这个模型在一定范围内具有最优的性能表现。
很多最优化问题都是在目标函数是凸函数或者凹函数的基础上进行的。原因很简单,凸函数的局部极小值就是其全局最小值,凹函数的局部极大值就是其全局最大值。因此,只要我们依据一个策略,一步步地逼近这个极值,最终肯定能够到达全局最值附近。

  1. 凸函数与凹函数判断
  • 指数函数是凸函数;
  • 对数函数是凹函数,然后负对数函数就是凸函数;
  • 对于一个凸函数进行仿射变换,可以理解为线性变换,结果还是凸函数;
  • 二次函数是凸函数(二次项系数为正);
  • 高斯分布函数是凹函数;
  • 多个凸函数的线性加权,如果权值是大于等于零的,那么整个加权结果函数是凸函数。
  1. 最优化问题
  • 线性规划
  • 二次规划
  • 二次约束的二次规划
  • 半正定规划
  1. 优化手段
  • 梯度上升(下降)法
  • 牛顿法 / 拟牛顿法
  • 坐标下降法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值