DPSO离散二进制粒子群算法编程以及实现

基于Matlab的离散二进制粒子群算法(DPSO/BPSO)实现需要结合二进制编码特性和离散空间搜索策略


一、核心算法设计

1. 二进制编码与初始化
  • 编码方式:采用0-1二进制串表示解空间,例如路径规划中节点选择(1表示选中,0表示未选)

  • 粒子结构:

    particles = randi([0,1], nPop, nVars);  % nPop粒子数,nVars决策变量维度
    velocities = zeros(nPop, nVars);        % 速度矩阵
    pBest = particles;                      % 个体最优
    gBest = particles(1,:);                 % 全局最优
    
2. 速度更新策略
  • Sigmoid函数映射:将连续速度转换为转移概率

    function prob = sigmoid(x)
        prob = 1./(1 + exp(-x));  % S型传递函数
    end
    
  • 速度更新公式:

    r1 = rand(nPop, nVars);
    r2 = rand(nPop, nVars);
    velocities = w*velocities + ...
                c1*r1.*(pBest - particles) + ...
                c2*r2.*(gBest - particles);
    
3. 位置更新规则
  • 概率选择机制:

    for i = 1:nPop
        for j = 1:nVars
            if rand < sigmoid(velocities(i,j))
                particles(i,j) = 1;
            else
                particles(i,j) = 0;
            end
        end
    end
    

二、关键参数设置

参数典型取值范围作用说明
惯性权重w0.5-1.5平衡全局与局部搜索能力
加速因子c11.5-2.5个体认知权重
加速因子c21.5-2.5群体认知权重
最大迭代100-500终止条件
粒子规模20-100种群多样性控制

三、Matlab

function [gBest, gBest_fitness] = BPSO(objFun, nPop, nVars, maxIter)
    % 参数初始化
    w = 0.9;    % 惯性权重
    c1 = 2.0;   % 个体学习因子
    c2 = 2.0;   % 群体学习因子
    
    % 粒子初始化
    particles = randi([0,1], nPop, nVars);
    pBest = particles;
    gBest = particles(1,:);
    
    % 主循环
    for iter = 1:maxIter
        % 计算适应度
        fitness = arrayfun(@(i) objFun(particles(i,:)), 1:nPop);
        
        % 更新个体最优
        updateIdx = fitness < arrayfun(@(i) objFun(pBest(i,:)), 1:nPop);
        pBest(updateIdx,:) = particles(updateIdx,:);
        
        % 更新全局最优
        [~, bestIdx] = min(fitness);
        if fitness(bestIdx) < objFun(gBest)
            gBest = particles(bestIdx,:);
        end
        
        % 速度更新
        r1 = rand(nPop, nVars);
        r2 = rand(nPop, nVars);
        velocities = w*velocities + ...
                    c1*r1.*(pBest - particles) + ...
                    c2*r2.*(gBest - particles);
        
        % 位置更新(Sigmoid概率转换)
        for i = 1:nPop
            for j = 1:nVars
                if rand < 1./(1 + exp(-velocities(i,j)))
                    particles(i,j) = 1;
                else
                    particles(i,j) = 0;
                end
            end
        end
    end
end

参考代码 DPSO离散二进制粒子群算法编程以及实现

四、典型应用场景

  1. 路径规划:栅格地图中选择最优路径节点
  2. 特征选择:二进制特征子集优化(0表示舍弃,1表示保留)
  3. 任务调度:离散时间槽的任务分配优化
  4. 网络路由:多跳路由中继节点选择

注:实际应用中需根据问题特性调整编码方式和适应度函数,建议通过Matlab Parallel Toolbox加速大规模计算。完整工程案例可参考《基于DPSO的无线传感器网络分簇优化系统设计》。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值