电力系统矩阵稀疏性、最优排序与傅里叶分析
1. 电力系统矩阵的稀疏性
在电力系统中,代表电力系统的线性联立方程往往具有稀疏性,这会产生稀疏矩阵。以一个 500 节点的系统为例,假设平均每个节点有两条母线连接,那么导纳矩阵 A 会有 500 个对角元素和 (500\times2\times2 = 2000) 个非对角元素。而矩阵 A 的总元素数为 (500\times500 = 250000),因此非零元素的占比仅为 1.0%。实际上,输电网络中每个节点的母线连接数通常为 1 - 1.5,这会进一步降低非零元素的比例。
当矩阵以 LU 或 LDU 形式进行分解时,原本为零的元素位置可能会产生非零元素,其计算公式为:
[a_{ij}(\text{new}) = a_{ij}(\text{primitive}) - \frac{a_{ip}a_{pj}}{a_{pp}}]
如果在第 p 步开始时,原矩阵中的 (a_{ij}) 为零,且 (a_{ip}) 和 (a_{pj}) 均不为零,那么 (a_{ij}(\text{new})) 就会成为一个新的非零项。
2. 最优排序
最优排序是对矩阵的行和列顺序进行重新排列,以最小化非零项的数量。当采用仅存储和处理非零项的编程方案时,通过尽可能缩短因子存储表的长度,可以节省运算量和计算机内存。一个真正的最优排序方案应产生最少的非零元素,但对于大型系统而言,确定这样的最优排序本身可能需要较长的计算机时间,从减少非零元素带来的益处来看,在实际中可能并不划算。目前尚未开发出绝对最优排序的有效算法,但已有一些方案能给出接近最优的解。