量子计算机非运算符的n次方根及伪随机数生成
量子计算机非运算符的n次方根问题
背景与问题提出
量子计算和量子计算机的研究已成为下一代计算机的前沿领域。经典量子力学使用希尔伯特空间中的复数向量来表示量子态,其中虚数 $i = \sqrt{-1}$ 在量子力学构建中起着关键作用。然而,虚数的神秘性给其操作、想象和理解带来了严重困难。特别是如何使用传统逻辑结构实现 $\sqrt{-1}$ ,这一问题困扰量子计算领域至少二十年。
在量子计算中,“非运算符的平方根”($\sqrt{¬}$)问题是一个难题。传统逻辑中,否定对应逻辑非(¬)。Feynman 提出该问题,Deutsch 进一步发展,他们建议使用逻辑运算解决 $\neg = \begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$ 方程。例如,设 $\neg$ 操作反转两个量子自旋态 $|0\rangle = \begin{pmatrix} 0 \ 1 \end{pmatrix}$ 和 $|1\rangle = \begin{pmatrix} 1 \ 0 \end{pmatrix}$ ,则有:
- $\neg|0\rangle = \begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \ 1 \end{pmatrix} = \begin{pmatrix} 1 \ 0 \end{pmatrix} = |1\rangle$
- $\neg|1\rangle = \begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \begin{p