目录
1.和为K的子数组
前缀和的概念
首先,我们使用一个叫做“前缀和”的概念。对于数组中的任何位置 j,前缀和 pre[j] 是数组中从第一个元素到第 j 个元素的总和。这意味着如果你想知道从元素 i+1 到 j 的子数组的和,你可以用 pre[j] - pre[i] 来计算。
使用 Map 来存储前缀和
在代码中,我们用一个 Map(哈希表)来存储每个前缀和出现的次数。这是为了快速检查某个特定的前缀和是否已经存在,以及它出现了多少次。
核心逻辑解析
当我们在数组中向前移动时,我们逐步增加 sum(当前的累积和)。对于每个新的 sum 值,我们检查 sum - k 是否在 Map 中:
sum - k 的意义:这个检查的意义在于,如果 sum - k 存在于 Map 中,说明之前在某个点的累积和是 sum - k。由于当前的累积和是 sum,这意味着从那个点到当前点的子数组之和恰好是 k(因为 sum- (sum - k) = k)。
如何使用这个信息:如果 sum - k 在 Map 中,那么 sum - k 出现的次数表示从不同的起始点到当前点的子数组和为 k 的不同情况。这是因为每一个 sum - k 都对应一个起点,使得从那个起点到当前点的子数组和为 k。
因此,每当我们找到一个 sum - k 存在于 Map 中时,我们就把它的计数(即之前这种情况发生的次数)加到 count 上,因为这表示我们又找到了相应数量的以当前元素结束的子数组,其和为 k
class Solution {
public:
int subarraySum(vector<int>& nums, int k) {
unordered_map<int, int> hash;
hash[0] = 1;
int sum = 0, ret = 0;
for(auto x : nums)
{
sum += x;
if(hash.count(sum - k)) ret += hash[sum - k];
hash[sum]++;
}
return ret;
}
};