2024蓝桥杯每日一题(BFS)

本文详细解析了五个编程题目,涉及BFS方法在迷宫路径、八数码游戏和计算全球变暖影响的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

备战2024年蓝桥杯 -- 每日一题
Python大学A组

        试题一:母亲的奶牛
        试题二:走迷宫
        试题三:八数码1
        试题四:全球变暖
        试题五:八数码2


试题一:母亲的奶牛

【题目描述】

        农夫约翰有三个容量分别为 A,B,C 升的挤奶桶。最开始桶 A 和桶 B 都是空的,而桶 C 里装满了牛奶。有时,约翰会将牛奶从一个桶倒到另一个桶中,直到被倒入牛奶的桶满了或者倒出牛奶的桶空了为止。这一过程中间不能有任何停顿,并且不会有任何牛奶的浪费。请你编写一个程序判断,当 A 桶是空的时候,C桶中可能包含多少升牛奶,找出所有的可能情况。

【输入格式】

        共一行,包含三个整数 A,B,C。

【输出格式】

        共一行,包含若干个整数,表示 C 桶中牛奶存量的所有可能情况,请将这些数字按升序排列。

【数据范围】

        1≤A,B,C≤20

【输入样例】

8 9 10

【输出样例】

1 2 8 9 10

 【解题思路】

        BFS简答模拟一下倒牛奶的过程。

【Python程序代码】

from collections import *
a,b,c = map(int,input().split())
n = 22
st = [[[0 for _ in range(n)] for _ in range(n)] for _ in range(n)]

q = deque()
def ins(a_,b_,c_):
    global q
    if st[a_][b_][c_]:return
    q.append([a_,b_,c_])
    st[a_][b_][c_]=1
def bfs():
    q.append([0,0,c])
    st[0][0][c]=1
    while q:
        a_,b_,c_ = q.popleft()
        ins( a_-min(a_,b-b_) , b_+min(a_,b-b_) , c_ )
        ins( a_-min(a_,c-c_) , b_ , c_+min(a_,c-c_) )
        ins( a_+min(b_,a-a_) , b_-min(b_,a-a_) , c_ )
        ins( a_ , b_-min(b_,c-c_) , c_+min(b_,c-c_) )
        ins( a_+min(c_,a-a_) , b_ , c_-min(c_,a-a_) )
        ins( a_ , b_+min(c_,b-b_) , c_-min(c_,b-b_) )
bfs()
for c_ in range(c+1):
    for b_ in range(b+1):
        if st[0][b_][c_]:
            print(c_,end=' ')
            break

 试题二:走迷宫

【题目描述】

        给定一个 n×m 的二维整数数组,用来表示一个迷宫,数组中只包含 0 或 1,其中 0 表示可以走的路,1 表示不可通过的墙壁。最初,有一个人位于左上角 (1,1)处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。请问,该人从左上角移动至右下角 (n,m)处,至少需要移动多少次。数据保证 (1,1) 处和 (n,m) 处的数字为 0,且一定至少存在一条通路。

【输入格式】

        第一行包含两个整数 n 和 m。

        接下来 n行,每行包含 m 个整数(0 或 1),表示完整的二维数组迷宫。

【输出格式】

        输出一个整数,表示从左上角移动至右下角的最少移动次数。

【数据范围】

        1≤n,m≤100

【输入样例】

5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0

【输出样例】

8

 【解题思路】

        BFS的典中典。

【Python程序代码】

from collections import *
n,m = map(int,input().split())
mp = [[0]*(m+5)]
for i in range(n):
    mp.append([0]+list(map(int,input().split())))
dir = [(1,0),(-1,0),(0,1),(0,-1)]
st = [[0]*(m+5) for _ in range(n+5)]
def bfs():
    q = deque()
    q.append([1,1,0])
    st[1][1]=1
    while q:
        tx,ty,step = q.popleft()
        if tx==n and ty==m:
            print(step)
            return
        for x_,y_ in dir:
            nx,ny = tx+x_,ty+y_
            if nx<1 or nx>n or ny<1 or ny>m:continue
            if mp[nx][ny]==1 or st[nx][ny]:continue
            q.append( [nx,ny,step+1] )
            st[nx][ny]=1
bfs()

 试题三:八数码

【题目描述】

        在一个 3×3 的网格中,1∼8这 8 个数字和一个 x 恰好不重不漏地分布在这 3×3的网格中。

例如:

1 2 3
x 4 6
7 5 8

        在游戏过程中,可以把 x 与其上、下、左、右四个方向之一的数字交换(如果存在)。我们的目的是通过交换,使得网格变为如下排列(称为正确排列):

1 2 3
4 5 6
7 8 x

        例如,示例中图形就可以通过让 x 先后与右、下、右三个方向的数字交换成功得到正确排列。交换过程如下

1 2 3   1 2 3   1 2 3   1 2 3
x 4 6   4 x 6   4 5 6   4 5 6
7 5 8   7 5 8   7 x 8   7 8 x

         把 x 与上下左右方向数字交换的行动记录为 udlr。现在,给你一个初始网格,请你通过最少的移动次数,得到正确排列。

【输入格式】

        输入占一行,将 3×3 的初始网格描绘出来。例如,如果初始网格如下所示:

1 2 3 
x 4 6 
7 5 8 

        则输入为:1 2 3 x 4 6 7 5 8

【输出格式】

        输出占一行,包含一个整数,表示最少交换次数。

        如果不存在解决方案,则输出 −1。

【输入样例】

2 3 4 1 5 x 7 6 8

【输出样例】

19

【解题思路】

        简答题,用BFS遍历查找即可。

【Python程序代码】

from collections import *
pd = ['0','1','2','3','4','5','6','7','8','x']
norm = "".join(pd)
dir = [1,-1,3,-3]
s = ['0'] + list(map(str,input().split()))
idx = s.index('x')
mp = defaultdict(int)
def bfs():
    q = deque()
    step = 0
    q.append( [s,idx,step] )
    ns = "".join(s)
    mp[ns]=1
    flag,res = 0,-1
    while q:
        ss,sidx,step = q.popleft()
        if "".join(ss)==norm:
            res = step
            break
        for i in dir:
            teps = ss.copy()
            nidx = sidx + i
            if nidx<1 or nidx>9:continue
            if (sidx==3 or sidx==6) and i==1:continue
            if (sidx==4 or sidx==7) and i==-1:continue
            teps[sidx],teps[nidx] = teps[nidx], teps[sidx]
            nteps = "".join(teps)
            if  mp[nteps]:continue
            mp[nteps]=1
            q.append( [teps,nidx,step+1] )
    print(res)
bfs()

试题四:全球变暖

【题目描述】

        你有一张某海域 N×N像素的照片,”.”表示海洋、”#”表示陆地,如下所示:

.......
.##....
.##....
....##.
..####.
...###.
.......

        其中”上下左右”四个方向上连在一起的一片陆地组成一座岛屿,例如上图就有 22 座岛屿。由于全球变暖导致了海面上升,科学家预测未来几十年,岛屿边缘一个像素的范围会被海水淹没。具体来说如果一块陆地像素与海洋相邻(上下左右四个相邻像素中有海洋),它就会被淹没。例如上图中的海域未来会变成如下样子:

.......
.......
.......
.......
....#..
.......
.......

        请你计算:依照科学家的预测,照片中有多少岛屿会被完全淹没。

【输入格式】

        第一行包含一个整数N。

        以下 N 行 N 列,包含一个由字符”#”和”.”构成的 N×N字符矩阵,代表一张海域照片,”#”表示陆地,”.”表示海洋。

        照片保证第 1行、第 1 列、第 N 行、第 N 列的像素都是海洋。

【输出格式】

        一个整数表示答案。

【数据范围】

        1≤N≤1000

【输入样例】

7
.......
.##....
.##....
....##.
..####.
...###.
.......

【输出样例】

1

【解题思路】

        简答题,用BFS找一遍就可以。

【Python程序代码】

from collections import *
n = int(input())
mp,res = [],0
st = [[0]*(n+5) for _ in range(n+5)]
for i in range(n):
    mp.append(list(input()))
def bfs(x,y):
    global res
    q = deque()
    flag = 0
    q.append([x,y])
    st[x][y]=1
    while q:
        tx,ty = q.popleft()
        for a,b in [[1,0],[-1,0],[0,1],[0,-1]]:
            nx,ny = tx+a,ty+b
            if nx<0 or nx>=n or ny<0 or ny>=n:continue
            if mp[nx][ny]=='.' or st[nx][ny]:continue
            st[nx][ny]=1
            if mp[nx+1][ny]==mp[nx-1][ny]==mp[nx][ny+1]==mp[nx][ny-1]=='#':flag=1
            q.append([nx,ny])
    if flag:res+=1
cnt = 0
for i in range(n):
    for j in range(n):
        if mp[i][j]=='#' and st[i][j]==0:
            cnt +=1
            bfs(i,j)
print(cnt-res)

试题五:八数码2

【题目描述】

        在一个 3×3 的网格中,1∼8这 8 个数字和一个 x 恰好不重不漏地分布在这 3×3的网格中。

例如:

1 2 3
x 4 6
7 5 8

        在游戏过程中,可以把 x 与其上、下、左、右四个方向之一的数字交换(如果存在)。我们的目的是通过交换,使得网格变为如下排列(称为正确排列):

1 2 3
4 5 6
7 8 x

        例如,示例中图形就可以通过让 x 先后与右、下、右三个方向的数字交换成功得到正确排列。交换过程如下

1 2 3   1 2 3   1 2 3   1 2 3
x 4 6   4 x 6   4 5 6   4 5 6
7 5 8   7 5 8   7 x 8   7 8 x

         把 x 与上下左右方向数字交换的行动记录为 udlr。现在,给你一个初始网格,请你通过最少的移动次数,得到正确排列。

【输入格式】

        输入占一行,将 3×3 的初始网格描绘出来。例如,如果初始网格如下所示:

1 2 3 
x 4 6 
7 5 8 

        则输入为:1 2 3 x 4 6 7 5 8

【输出格式】

       输出占一行,包含一个字符串,表示得到正确排列的完整行动记录。

        如果答案不唯一,输出任意一种合法方案即可。

        如果不存在解决方案,则输出 unsolvable

【输入样例】

2 3 4 1 5 x 7 6 8

【输出样例】

ullddrurdllurdruldr

【解题思路】

        简答题,在前面八数码1的基础上改一下step就可以了。

【Python程序代码】

from collections import *
pd = ['0','1','2','3','4','5','6','7','8','x']
norm = "".join(pd)
dir = [1,-1,3,-3]
fx = ['r','l','d','u']
s = ['0'] + list(map(str,input().split()))
idx = s.index('x')
mp = defaultdict(int)
def bfs():
    q = deque()
    step = ""
    q.append( [s,idx,step] )
    ns = "".join(s)
    mp[ns]=1
    flag,res = 0,-1
    while q:
        ss,sidx,step = q.popleft()
        if "".join(ss)==norm:
            flag = 1
            res = step
            break
        for i in range(4):
            teps = ss.copy()
            nidx = sidx + dir[i]
            if nidx<1 or nidx>9:continue
            if (sidx==3 or sidx==6) and dir[i]==1:continue
            if (sidx==4 or sidx==7) and dir[i]==-1:continue
            teps[sidx],teps[nidx] = teps[nidx], teps[sidx]
            nteps = "".join(teps)
            if  mp[nteps]:continue
            mp[nteps]=1
            q.append( [teps,nidx,step+fx[i]] )
    if flag:print(res)
    else:print('unsolvable')
bfs()

<think>好的,我现在要处理用户关于“蓝桥杯Python一周速成”的查询。首先,我需要理解用户的需求。用户可能是在短时间内需要准备蓝桥杯Python组的比赛,时间紧迫,所以希望得到高效的学习策略和重点内容。 接下来,我应该考虑蓝桥杯Python组的考察范围。通常这类比赛会涉及基础语法、算法、数据结构,以及实际问题的解决能力。由于时间只有一周,用户不可能深入所有细节,因此需要筛选出高频考点和容易快速掌握的内容。 然后,我得规划出一周的学习计划。每天安排不同的主题,比如第一天基础语法,第二天数据结构,第三天算法入门,第四天真题训练,第五天模拟题,第六天查漏补缺,第七天复习调整。每个主题需要突出重点,例如基础语法中的循环、条件判断、函数;数据结构中的列表、字典、字符串处理;算法部分如排序、递归、动态规划基础。 还要考虑用户可能的基础情况。如果用户已经有一定Python基础,重点应放在算法和真题训练上;如果是零基础,可能需要更紧凑的安排,但一周时间确实紧张。不过用户提到“速成”,所以假设有一定的基础,但需要系统复习和强化。 然后,需要给出具体的学习建议。例如推荐哪些资源,官方题库的重要性,时间分配策略,以及调试能力的培养。同时提醒用户避免的误区,比如不要死记硬背代码,或者忽视真题。 可能遇到的问题是如何在短时间内高效掌握关键算法。这时候需要推荐常见的算法题型,如排序、查找、简单动态规划,并提供典型例题,比如斐波那契数列、背包问题等。但要注意复杂度,避免过于复杂的内容。 最后,总结部分需要鼓励用户,强调合理规划和专注的重要性,同时提醒调整心态,保持良好状态参赛。可能还需要提醒用户注意比赛规则和环境,比如蓝桥杯使用的评测系统,编程环境的熟悉等。 检查是否有遗漏点,比如是否需要提到具体的参考资料或在线资源?用户可能希望得到推荐的练习平台,比如蓝桥杯官网、LeetCode简单题、牛客网等。是否需要包含这些信息?根据用户的问题,可能不需要太具体的推荐,但给出一般性建议是合适的。 另外,确保回答结构清晰,分点明确,符合用户可见层的指令要求。使用中文,避免专业术语过于晦涩,同时保持逻辑连贯,帮助用户一步步解决问题。 现在需要将这些思考整理成一个结构化的回答,涵盖每日计划、重点内容、学习建议、注意事项等,确保用户能在一周内高效备考。</think>以下是针对蓝桥杯Python组**一周速成计划**的详细指南,结合高频考点和短期突破策略: --- ### **一、核心考点与优先级** 蓝桥杯Python组侧重**算法实现能力**和**实际问题建模**,重点掌握以下内容(按优先级排序): 1. **基础语法**:输入输出(`input()`格式化处理)、列表推导式、字符串操作(切片、`split()`/`join()`) 2. **数据结构**:列表(排序、二维数组操作)、字典(计数、映射)、集合(去重) 3. **算法**: - **必考**:贪心算法(找零、活动选择)、DFS/BFS基础(迷宫问题)、动态规划(一维DP,如爬楼梯) - **高频**:排序(冒泡、快速排序)、递归(阶乘、斐波那契)、数学问题(质数判断、进制转换) 4. **真题题型**:日期计算、字符串处理、图论基础(最短路径简化版) --- ### **二、7天速成计划表** #### **Day 1-2:语法与数据结构突击** - **上午**: - 输入输出:处理多行输入(如`sys.stdin.read()`),格式化输出(`f-string`对齐) - 列表操作:合并`extend()`、排序`sorted(key=lambda)`、二维列表遍历(矩阵转置) - **下午**: - 字典应用:统计词频(`collections.defaultdict`)、键值反转 - 字符串技巧:`replace()`链式处理、正则表达式简单匹配(如`re.findall(r'\d+',s)`) #### **Day 3-4:算法入门与模板记忆** - **贪心算法**: - 典型题:硬币找零(优先大面值)、区间调度(按结束时间排序) - **DFS/BFS**: - 模板代码:迷宫路径计数(使用栈/队列)、岛屿问题 - **动态规划**: - 一维DP:背包问题(01背包简化版)、最长递增子序列(`O(n^2)`解法) #### **Day 5-6:真题实战与调试技巧** - **刷题策略**: - 近3年初赛真题(官网/题库),限时90分钟模拟 - 重点题型:日期类(闰年判断、星期计算)、数学逻辑(等差数列求和、质因数分解) - **调试技巧**: - 使用`print`定位错误(输出中间变量) - 边界测试:输入为空、极值(如n=0或1e5) #### **Day 7:查漏补缺与策略优化** - **易错点回顾**: - 循环边界错误(如`range(n)` vs `range(1,n+1)`) - 深拷贝/浅拷贝问题(二维列表使用`copy.deepcopy()`) - **时间分配策略**: - 简单题30分钟内AC,难题先写伪代码保部分分 --- ### **三、推荐资源与工具** 1. **练习平台**:蓝桥杯官方练习系统、洛谷(筛选“普及-”难度) 2. **代码模板**:整理DFS/BFS、快速排序等高频算法模板(手写记忆) 3. **效率工具**:使用Python内置函数(如`itertools.permutations`生成排列) --- ### **四、注意事项** - ❌ 避免死磕复杂算法(如线段树、网络流) - ✅ 考试时优先提交**部分正确**的代码(蓝桥杯按用例给分) - ✅ 注意Python特性:大整数运算无需优化,但递归深度默认限制(可设置`sys.setrecursionlimit`) --- 通过**真题驱动学习+模板化训练**,即使时间紧张也能有效提升应试能力。最后一天保持良好作息,调整心态应对比赛!
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学数学的懒哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值