
ChatGPT
文章平均质量分 84
明明如月学长
阿里巴巴 资深 Java 研发工程师、AI 应用工程师,Cherry Studio 官方认证讲师,《系统掌握大语言模型提示词 - 从理论到实践》小册作者、《解锁大厂思维:剖析《阿里巴巴Java开发手册》》、《再学经典:《EffectiveJava》独家解析》专栏作者、《性能优化方法论》技术电子书作者。热爱技术,喜欢思考,乐于分享。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Weavefox 图片 1 比 1 生成前端源代码
蚂蚁Weavefox上线:AI助力前端1:1还原开发体验 蚂蚁集团新推出的Weavefox平台引发关注,该工具通过截图即可1:1还原前端界面,支持Kimi-K2模型。用户只需上传设计图,系统会自动生成提示词并输出代码,支持组件拆分和技术栈选择,还原度令人满意。注册即赠100试用额度,操作流程简洁高效。 展望未来,AI将在软件开发全流程中发挥更大作用,从需求分析到部署优化的各个环节实现智能辅助。Weavefox的出现预示着"Vibe Coding"时代的到来,AI将像真实同事一样参与全流程原创 2025-07-19 19:39:55 · 466 阅读 · 0 评论 -
巨好用的提示词优化工具 Prompt IDE
介绍了一款实用的Prompt IDE工具(https://www.atbigapp.com/prompt),支持提示词版本管理、自动优化和测试功能。该工具可对原始提示词进行细化优化,并提供海量提示词库(https://www.atbigapp.com/prompt-hub)原创 2025-06-11 07:30:00 · 857 阅读 · 0 评论 -
天工超级智能体是 “AI版Office“?慢!或许还有一段距离
就拿做 PPT 来说,虽然动手操作很耗时,但最费脑筋的还是你 PPT 的结构,需要什么样的素材,用什么样的框架等,而且要能够真正符合你的风格,现在的 AI 还很难实现。虽然,有些产品确实有可圈可点之处,但官方的宣传超过实际,加上自媒体精心选择好的 Case 使劲吹,导致用户预期普遍过高,最后导致上手体验落差大多。天工超级智能体比其他的产品多走了一步,划分文档、PPT、表格、网页、通用等几种模式,垂直度更高,效果理论上能够更好一些。宏观上:天工超级智能体从完全通用的智能体走向场景化,是非常重要的一个转变。原创 2025-05-26 07:30:00 · 921 阅读 · 0 评论 -
在生产环境部署 RAG 智能体的 10 条经验教训
AI 智能体展现出令人惊叹的潜力,但企业往往难以在试点后获得实际价值。"上下文悖论"是主要障碍——AI 在复杂任务上表现出色,却难以理解企业特定环境。本文基于 [Contextual AI] 首席执行官 Douwe Kiela 的经验,适合任何部署检索增强生成(RAG)系统的团队。文章总结了为财富 500 强企业扩展 AI 的 10 个关键经验,重点关注系统思维、专业化和生产就绪。我是 Douwe Kiela,[Contextual AI] 的首席执行官。原创 2025-05-09 07:45:00 · 751 阅读 · 0 评论 -
AI 正在创造一代不懂编程的程序员
这篇文章探讨了 AI 对程序员能力的影响,指出过度依赖 AI 导致多项基础能力衰退。作者提出“无 AI 日”实践方案及一系列使用规则,如先思考再用 AI、分级使用、培养新能力等,并强调要将 AI 定位为辅助工具,保持学习心态,提升核心竞争力。文章引起强烈反响。原创 2025-02-07 21:09:37 · 1264 阅读 · 7 评论 -
重生之我在 Claude 上 “复刻”了 DeepSeek-R1 效果
本文从用户需求出发,通过提示词工程在 Claude 3.5 Sonnet 上实现了类似 DeepSeek-R1 的思考过程可视化。尽管无法完全复制其深度思考能力,但通过提取思考模式并结合 Claude 特点,探索出一种提升模型透明度的方法。优秀的提示词往往来自于反复调优和实践验证在编写提示词时,参考目标模型的反馈很有帮助提示词的价值不仅在于提升输出质量,更在于帮助我们理解模型的思维方式在新一代大模型时代,提示词工程正从技巧积累转向帮助用户优化需求表达、理解模型思维。原创 2025-02-06 23:56:17 · 1193 阅读 · 0 评论 -
六年大厂开发,为何我开始学习提示词?
如果将提示词类比为设计模式,那么这些“战略”层面的原则就像咱们开发同学所熟知的软件工程的经典原则:“高内聚、低耦合”、“隐藏复杂度”、“计算机领域的任何问题,都是可以通过新增一个间接的中间层来解决的”等,以及设计模式的七大原则。当提示词已接近模型的能力上限,依然无法获得理想的结果时,可能需要考虑其他解决方案,如切换到更高级的模型、进行模型微调、采用多智能体协作,或重新评估任务拆解的合理性。,AI可以先用生活化的例子帮助我理解复杂概念,再提供详细解释,最后用便于记忆的方式进行总结,极大地提升了我的学习效率。原创 2024-10-26 20:21:29 · 1888 阅读 · 0 评论 -
用其他语言提问时以英语思考可以大大提高模型性能
高资源语言(High-resource languages)是指那些在预训练过程中拥有丰富数据资源的语言。这些语言通常有大量的文本语料库、标注数据集和丰富的模型支持,使得它们在自然语言处理任务中表现优异。如英语。低资源语言(Low-resource languages)是指那些在自然语言处理(NLP)任务中缺乏大量数据的语言。这些语言在大规模预训练数据中占有较少比例,缺乏丰富的语言资源,如文本语料库、标注数据集、词典、工具和模型支持。由于数据量和相关资源的稀缺,处理这些语言的模型通常表现较差。原创 2024-09-23 08:00:00 · 925 阅读 · 0 评论 -
提示工程 vs 微调 vs RAG
提示工程、微调和检索增强生成(RAG)是三种主要优化大型语言模型输出的方法。原创 2024-09-02 08:30:00 · 2860 阅读 · 0 评论 -
通过提示词越狱解锁学习提示词的新姿势
提示词越狱为提示词的学习和调优提供了一个全新的视角。通过研究如何绕过大语言模型的安全机制,用户可以更深入地理解提示词的工作原理,从而更好地设计和优化自己的提示词。在本文中,我们探讨了提示词越狱的定义、应用场景,以及如何通过越狱提取和学习优秀的系统提示词与 Agent 提示词来提供自己的提示词创作和调优水平。总结如下:提示词越狱的双刃剑效应:虽然提示词越狱有助于学习和研究,但它也揭示了语言模型的脆弱性,提醒我们在使用这些工具时要保持审慎。越狱提示词可以揭示系统提示词的设计逻辑,但这也意味着潜在的安全隐患。原创 2024-08-10 21:30:20 · 2476 阅读 · 0 评论 -
浅析 GitHub Copilot 工作原理帮你更高效使用
GitHub 还为企业提供自定义模型。更具体地说,他们可以微调 ChatGPT 以生成更好的响应。风格偏好:团队可能有特定的编码风格、命名约定、格式指南等。使用微调版本的 ChatGPT 将使 Copilot 遵循这些规则。API/SDK 版本:团队可能正在使用特定版本的 API/SDK。ChatGPT 模型可以在使用目标版本的代码库上进行微调,以提供兼容并优化特定开发环境的建议。专有代码库:一些公司有使用不公开技术的专有代码库。原创 2024-08-08 08:35:28 · 4269 阅读 · 0 评论 -
一文理解生成式AI应用的五个级别:Tool、Chatbot、Copilot、Agent 和 Intelligence
在当前的AI应用领域,根据其智能化程度和自主工作能力,可以将其分为五个级别:Tool、Chatbot、Copilot、Agent 和 Intelligence。这些级别的划分帮助我们理解不同AI技术的应用场景及其发展潜力。原创 2024-07-27 14:03:19 · 2962 阅读 · 5 评论 -
相见恨晚的《新程序员》 AI 专辑
前不久有位朋友送我一本 CSDN 出品的 《新程序员 006:人工智能新十年》 的杂志。说实话,虽然我经常在 CDSN 上写作,但是我也认为 CSDN 上很多文章质量并不是特别高,我自己也很久没读过技术类杂志了,对这份杂志并没抱很大期待。收到后杂志放了几天,没拆。但,既然朋友推荐,而且是人工智能相关的内容,自己也非常感兴趣,上周末正好有时间,不妨拆看看讲的啥。阅读几篇之后,发现和想象的完全不一样。原创 2024-07-07 15:05:20 · 6232 阅读 · 0 评论 -
Easy 同学:AI 时代将加速计算机专业和程序员职业的分化
AI时代将加速计算机专业和程序员行业的分化,顶尖人才会集中在AI核心领域,而大量普通CURD工程师岗位将被AI取代。选择计算机作为第二专业的好处在于,即使基础编程能力变得普遍,你仍然拥有另一个领域的专业知识,这会使你在职场上更具竞争力。重要的是要有能力、精力和毅力把两个专业都学好,只有这样才能真正从中受益。AI 时代已经到来,Easy 同学的看法值得我们深思,作为软件行业从业人员我们更应该了解 AI ,用好 AI ,提高自己的竞争力。我们还需要提高人相对于 AI 的不容易替代的能力,提高自己的不可替代性。原创 2024-06-06 21:28:45 · 1349 阅读 · 0 评论 -
AI 讲解大语言模型幻觉原因
有时,为了保持语句的连贯性和流畅性,模型可能会生成看似合理但实际上并不准确的信息。:生成模型的设计并未专注于事实准确性,而是专注于语言的流畅性和连贯性。因此,模型有时会优先生成看似连贯的回答,而不是基于事实的回答。如果训练数据中包含不准确或虚假的信息,模型可能会在生成内容时反映这些错误。通过改进训练数据质量、引入事实验证机制、以及优化模型的生成策略,可以在一定程度上减少大模型幻觉的发生。这可能导致生成的内容偏离正确的事实。:大模型并没有内置的事实验证机制,它们无法像人类一样即时查证某些信息的真实性。原创 2024-05-20 07:00:00 · 843 阅读 · 0 评论 -
为什么需要 RAG?
在大模型的应用中,尤其是行业大模型的实现方式中,RAG扮演着重要的角色。:RAG通过检索机制,能够灵活适应各种行业和场景的需求,尤其是对于那些需要大量专业知识和实时信息的应用场景,如金融分析、法律咨询等。:RAG能够根据不同的查询检索到不同的信息,为生成的内容提供个性化的背景和依据,促进内容创新和个性化。:RAG在生成响应前会先检索相关信息,这一过程为模型的决策提供了可追溯的依据,增强了模型的可解释性。:通过检索到的相关信息直接辅助生成,RAG可以减少模型需要生成的内容量,提高处理效率和响应速度。原创 2024-05-14 07:15:00 · 895 阅读 · 0 评论 -
AI 业务应用经验:以零一万物的万知 AI 创作为例
我认为,当前在 AI 落地时,可以借鉴万知 AI 创作 PPT 的设计理念。如将复杂任务拆分成多个步骤,让用户的输入成本降低,输入的准确性和全面性更好,让用户可以及时对中间过程进行干预避免产出不符合预期的结果。任务的拆解降低了AI 的难度,同时通过用户的纠正和确认,让 AI 更好地理解用户意图,同时通过通过重试机制降低AI “发挥失误” 带来的影响。大家在实践中可以将更多先进的设计理念融合进来,进一步优化,让 AI 不只是“噱头”,而是真正能够服务好业务发展的“发动机”。原创 2024-04-15 06:59:41 · 2340 阅读 · 4 评论 -
AI 助力问题驱动式学习
用 AI 给人生开挂的正确方式 - 在 AI 迅速进化的时代,我们应该如何不落伍》,讲到在 AI 快速发展的今天,我们需要学习:驾驭大模型的能力、学习最基础最核心的知识、培养不容易被 AI 取代的能力。我们可以跨行业寻找机会,在这个 “人人都是工程师”的时代基于大模型快速创建应用解决痛点,灵活运用 AI 帮助自己解决问题。并且强调在 AI 时代应该使用 AI 来加速学习。原创 2024-04-12 08:00:00 · 2924 阅读 · 0 评论 -
从人机界面设计黄金三法则视角看 ChatGPT 的界面设计的“好”与“坏”
本文讲解了人机界面设计的黄金三法则,并列举出 ChatGPT 界面设计中符合和违背黄金三法则的地方。希望借助本文帮助大家理解人机界面设计的黄金三法则,在日常设计界面尤其是由开发主导的 B 端界面时,能够遵循这些原则,给用户带来更丝滑的体验。原创 2024-04-04 23:37:41 · 2249 阅读 · 2 评论 -
吴恩达:AI 智能体工作流
定义:反射模式允许AI代理自我审视其产出,评估正确性、效率和构造质量。通过这种方式,AI能够识别并修正自身产出中的错误,从而提高最终产物的质量。应用实例:一个典型的应用是代码编写。AI首先生成代码,然后再次审视这段代码,检查是否有逻辑错误或可以优化的地方,并据此进行修改。这种自我修正的过程可能循环进行多次,直到代码达到预期的标准。原创 2024-04-04 07:30:00 · 3476 阅读 · 3 评论 -
AI 应用之文章转脑图的 N 种姿势
本文主要介绍利用 AI 将文章转为思维导图的几种方法,如果你是人民币玩家直接使用现成的工具,如果你嫌麻烦可以采用曲线救国的方案,如通过 Markdown 中转后导入 Xmind 或者通过 PlantUML 脑图。本文只是举一个例子,希望大家可以举一反三,能够充分利用 AI 解决工作、生活和学习中的各种问题。原创 2024-04-03 00:22:13 · 2868 阅读 · 6 评论 -
AI 通俗讲解大语言模型幻觉
为了更好地理解这个概念,我们可以用一个简单的例子来比喻:想象你正在和一个非常有想象力的朋友聊天,这位朋友善于讲故事,他们可以根据你提供的任何信息,即兴发挥,创造出一个完整的故事。:明明如月学长, CSDN 博客专家,大厂高级 Java 工程师,《性能优化方法论》作者、《解锁大厂思维:剖析《阿里巴巴Java开发手册》》、《再学经典:《Effective Java》独家解析》专栏作者。但是,就像那个善于编故事的朋友一样,大模型有时也会“幻觉”,即它们可能会生成一些听起来很合理,但实际上完全是虚构的信息。原创 2024-03-30 07:15:00 · 546 阅读 · 0 评论 -
用 AI 给人生开挂的正确方式 - 在 AI 迅速进化的时代,我们应该如何不落伍
本文主要讲述在 AI 快速进化的时代,作为一个普通人该如何应对才不容易落伍。这是一个非常大的命题,也是值得每个人去思考的问题。希望本文的一些观点能够对大家带来一些启发,也欢迎大家在评论区交流讨论。能够在有生之年目的 AI 的发展非常荣幸,在这个快速变革的时代,我们需要调整自己的学习的内容,学习的方法,真正享受 AI 带给我们学习和生活的点滴改变。原创 2024-03-26 00:53:25 · 3312 阅读 · 9 评论 -
用AI给人生开挂的正确方式 - 在AI迅速进化的时代,我们应该如何不落伍
明明如月学长, CSDN 博客专家,大厂高级 Java 工程师,《性能优化方法论》作者、《解锁大厂思维:剖析《阿里巴巴Java开发手册》》、《再学经典:《Effective Java》独家解析》专栏作者。原创 2024-03-22 23:44:02 · 975 阅读 · 0 评论 -
大语言模型的参数级别和能力之间的关系
然而,需要注意的是,参数数量的增加也伴随着计算资源的显著增加。模型的参数数量通常被视为模型能力的一个重要指标,因为更多的参数意味着模型有更大的能力来学习、存储和泛化不同类型的数据。:尽管大模型在特定任务上的表现可能更好,但它们也有过度拟合的风险,特别是在训练数据有限的情况下。:大模型可以被看作是拥有更大的“知识库”,能够存储更多的事实、概念和世界知识。:具有更多参数的模型能够捕捉到数据中的更细微的差异和模式,这可以增强模型在语言理解、翻译、文本生成等方面的性能。原创 2024-03-18 07:15:00 · 1908 阅读 · 0 评论 -
深入理解RAG:检索与生成的融合
通过结合检索系统的精准和深度,以及生成模型的创造力和流畅度,RAG模型能够以前所未有的精湛水平和准确度应对广泛的任务。就像一位熟练的讲述者编织叙事线索,生成模型综合检索到的信息与其内部知识,生成连贯且与上下文相关的响应。总之,检索增强生成(RAG)模型代表了自然语言处理领域一种突破性的方法,它将检索系统和生成模型的力量融会贯通,生成高度复杂且与上下文紧密相关的响应。就像旅行社代理要了解旅客的需求和偏好,从而推荐最佳行程,RAG也会仔细分析用户的查询,确定他们的意图,并根据预算指引选择最合适的景点和城市。原创 2024-03-17 07:00:00 · 1435 阅读 · 0 评论 -
五年内程序员这个职业将消失?
Stability AI,由 Mostaque 领导的公司,正在积极从事各种 AI 项目,包括语言模型、图像生成和 DNA 分析。这是 Stability AI 的 CEO Emad Mostaque 的预测,而且他还声称,Github 上已有 41% 的代码是由 AI 生成的。总之,尽管 AI 无疑正在改变编程领域,但它在不久的将来完全取代人类程序员的想法仍然是一个值得讨论的话题。这一说法指向了一个可能的未来,即 AI 可能自动完成许多编程任务,从而重新塑造人类程序员的角色。技术社区中的其他观点认为,原创 2024-03-11 08:00:00 · 6352 阅读 · 23 评论 -
软考高级: URL 知识点和例题
URL(统一资源定位器)的结构是网络上定位资源的一种方式。(Scheme): 定义了用于访问资源的协议类型,如http、https、ftp等。例如,在中,http是协议。(Hostname): 指定访问资源的主机或域名,如在中,是主机名。(Port)(可选): 通过网络与主机上的应用程序进行通信的端口号,默认情况下,http 协议使用 80 端口,https 使用 443 端口。如果使用非标准端口,则需要显式指定,如。(Path): 资源在服务器上的具体地址。例如,在中,是路径,它指向服务器上名为。原创 2024-03-02 20:24:32 · 1146 阅读 · 0 评论 -
几秒钟帮同事解决了一个困扰半天的问题,在妹子面前漏了一手
本文介绍如何使用 AI 工具,几秒钟帮助身边妹子解决了困扰半天的问题。不仅分享解决办法,还分享解决过程以及由此带来的启发。原创 2023-10-20 07:45:00 · 751 阅读 · 6 评论 -
从失望到精通:AI 大模型的掌握与运用技巧
曾经有一批强大的 AI 模型摆在我面前,我却未曾珍惜,知道发现别人能够轻松驾驭它发挥巨大价值,才后悔莫及,如果上天给我重来一次的机会,我会努力学习经验和技巧,成为第一批熟练驾驭 AI 模型的人!随着 ChatGPT 的问世,各行各业深受震撼,国内外各种新的大模型也如雨后春笋般相继出现。一些对机遇反应迅速的人已经开始将 AI 运用到学习和工作中,甚至已经开始借助 AI 赚钱了。原创 2023-08-18 09:13:59 · 2244 阅读 · 4 评论 -
机器学习模型是记忆还是泛化?论文摘要
文章探讨了机器学习模型在训练过程中是如何从记忆训练数据转变为正确泛化未见输入的现象。这一现象被称为“grokking”,自 2021 年研究人员在一系列小型模型上的发现后引起了广泛关注。文章通过观察小型模型的训练动态,揭示了这一现象的机制,并探讨了如何将这些技术应用于当前的大型模型。文章还通过模块加法(Modular Addition)的例子,详细解释了“grokking”现象,并展示了如何通过权重衰减、神经元数量、训练样本等超参数的调整来实现模型的记忆和泛化。原创 2023-08-10 22:42:08 · 773 阅读 · 0 评论 -
AI 时代,程序员的出路在何方?
随着 ChatGPT 的横空出世,给全球带来了巨大冲击,各种大语言模型如雨后春笋不断出现。国外如谷歌 Bard、Anthropic 的 Claude,国内如百度文心一言、阿里通义千问、讯飞星火认知大模型、昆仑万维天工大模型等。现在的大语言模型比以前的模型的代码生成、代码解释能力有了质的飞跃,很多程序员已经开始使用大语言模型编写代码,因此很多人认为 “程序员将会被 AI 所取代”。AI 时代,程序员真的要被淘汰了吗?在 AI 时代,如何才能提高竞争力?原创 2023-08-07 08:00:00 · 1769 阅读 · 1 评论 -
我是如何使用ChatGPT和CoPilot作为编码助手的
我已经探索过一些在编写高质量、功能性代码方面的 AI 实践应用,它们能在你编程时提供诸多便利。我一直在工作中使用网页工具和(我们可以将 Copilot 视为 GPT 的一个变体,因为它们都基于同一核心技术构建)。原创 2023-07-27 08:00:00 · 642 阅读 · 0 评论 -
不要拿 ChatGPT 干这 6 件事
虽然 ChatGPT 是一个强大的 AI 工具,能够生成连贯和相关性极强的回复,但它也有其局限性。它不是敏感信息的安全渠道,也不是法律或医疗咨询的可靠来源,不能替代人类的决策或专业的心理健康支持,也不是事实信息的权威来源,或者是复杂数学问题的精确辅助工具。ChatGPT 极其强大,对我们与计算机的互动方式产生了变革性影响。然而,像任何工具一样,理解其限制并正确使用它非常重要。以下是你不应该用 ChatGPT 去做的 6 事情。原创 2023-06-14 07:30:00 · 535 阅读 · 0 评论 -
ChatGPT 4 的 6 个最佳使用场景
无论是在 ChatGPT 中还是通过 API,对 OpenAI 的 GPT-4 模型的访问比 GPT-3.5 限制更多。这意味着你需要慎重考虑在何种情况下使用 GPT-4,并选择性地将最适合的任务交给它,以便让其发挥更大作用。原创 2023-06-09 07:30:00 · 2939 阅读 · 0 评论 -
GPT-4 的 6 个最佳使用场景
作者:SYDNEY BUTLER无论是在 ChatGPT 中还是通过 API,对 OpenAI 的 GPT-4 模型的访问比 GPT-3.5 限制更多。这意味着你需要慎重考虑在何种情况下使用 GPT-4,并选择性地将最适合的任务交给它,以便让其发挥更大作用。原创 2023-05-31 07:30:00 · 3057 阅读 · 0 评论 -
GPT-4 插件和插件化的思考
"插件化"是指在软件中引入插件系统,这样用户可以按照需要安装和使用不同的插件以扩展软件的功能。这种方式使得软件的功能可以灵活扩展,而不必在软件的主体部分添加大量代码。像大名鼎鼎的 Chrome 浏览器、 开发工具如 VS Code、 IDEA、Eclipse 、包括效率神器 Alfred、Utools 等都支持插件,正是因为这些插件让他们更流行,功能更丰富,可玩性更强。本文介绍了 GPT-4 一些好用的插件,介绍什么是插件化、插件化的好处插件化和设计模式的关系和 GPT 插件目前还存在的一些问题。原创 2023-05-29 07:00:00 · 2544 阅读 · 0 评论