哈夫曼树(Huffman Tree),与哈夫曼编码

目录

一.哈夫曼树

1.什么是哈夫曼树?

2.哈夫曼树关键字说明

3.用代码实现哈夫曼树思路分析

4.代码实现 

二.哈夫曼编码

1.哈夫曼编码基本介绍

2.原理剖析

3.代码实现


一.哈夫曼树


1.什么是哈夫曼树?

哈夫曼树:给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

2.哈夫曼树关键字说明

  1. 路径和路径长度:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通中分支的数目称为路径长度。若规定根结点的层数为 1,则从根结点到第 L 层结点的路径长度为 L-1。
  2. 结点的权及带权路径长度:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积
  3. 树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为 WPL(weighted path length) ,权值越大的结点离根结点越近的二叉树才是最优二叉树。
  4.  WPL 最小的就是赫夫曼树

3.用代码实现哈夫曼树思路分析

例如:给你一个数列 {13, 7, 8, 3, 29, 6, 1},要求转成一颗哈夫曼树

思路分析:

  1. 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
  2. 取出根节点权值最小的两颗二叉树
  3. 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
  4. 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一棵哈夫曼树

4.代码实现 

package com.ws.HuffMan;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class HuffmanTree {
    /**
     * 创建哈夫曼树
     * @param arr 要变成哈夫曼树的数组
     * @return 哈夫曼树的root节点
     */
    public Node creatHuffMan(int[] arr) {
        //创建一个node集合
        List<Node> nodes = new ArrayList<Node>();
        //把数组中的数传入集合
        for (int value : arr) {
            nodes.add(new Node(value));
        }
        while (nodes.size() > 1) {
            //排序
            Collections.sort(nodes);

            Node leftNode = nodes.get(0);
            Node rightNode = nodes.get(1);
            //取集合前两个最小的 创建一个二叉树
            Node parent = new Node(leftNode.value + rightNode.value);
          
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

w7486

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值