目录
一.哈夫曼树
1.什么是哈夫曼树?
哈夫曼树:给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。
2.哈夫曼树关键字说明
- 路径和路径长度:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为 1,则从根结点到第 L 层结点的路径长度为 L-1。
- 结点的权及带权路径长度:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结 点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积
- 树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为 WPL(weighted path length) ,权值越大的结点离根结点越近的二叉树才是最优二叉树。
- WPL 最小的就是赫夫曼树
3.用代码实现哈夫曼树思路分析
例如:给你一个数列 {13, 7, 8, 3, 29, 6, 1},要求转成一颗哈夫曼树
思路分析:
- 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
- 取出根节点权值最小的两颗二叉树
- 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
- 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一棵哈夫曼树
4.代码实现
package com.ws.HuffMan;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class HuffmanTree {
/**
* 创建哈夫曼树
* @param arr 要变成哈夫曼树的数组
* @return 哈夫曼树的root节点
*/
public Node creatHuffMan(int[] arr) {
//创建一个node集合
List<Node> nodes = new ArrayList<Node>();
//把数组中的数传入集合
for (int value : arr) {
nodes.add(new Node(value));
}
while (nodes.size() > 1) {
//排序
Collections.sort(nodes);
Node leftNode = nodes.get(0);
Node rightNode = nodes.get(1);
//取集合前两个最小的 创建一个二叉树
Node parent = new Node(leftNode.value + rightNode.value);