🚀 AI篇持续更新中!(长期更新)
AI炼丹日志-31- 千呼万唤始出来 GPT-5 发布!“快的模型 + 深度思考模型 + 实时路由”,持续打造实用AI工具指南!📐🤖
💻 Java篇正式开启!(300篇)
目前2025年08月18日更新到:
Java-100 深入浅出 MySQL事务隔离级别:读未提交、已提交、可重复读与串行化
MyBatis 已完结,Spring 已完结,Nginx已完结,Tomcat已完结,分布式服务正在更新!深入浅出助你打牢基础!
📊 大数据板块已完成多项干货更新(300篇):
包括 Hadoop、Hive、Kafka、Flink、ClickHouse、Elasticsearch 等二十余项核心组件,覆盖离线+实时数仓全栈!
大数据-278 Spark MLib - 基础介绍 机器学习算法 梯度提升树 GBDT案例 详解
并行复制技术详解
MySQL的主从复制延迟问题一直是数据库管理员和开发者关注的焦点。随着数据量增长和业务需求增加,传统的单线程复制模式已无法满足性能要求。MySQL从5.6版本开始引入并行复制功能,官方称为enhanced multi-threaded slave(简称MTS),旨在显著改善复制延迟问题。
传统复制架构的问题
在标准的主从复制架构中,从库主要依赖两个关键线程:
- IO Thread:负责从主库接收binlog事件并写入从库的中继日志(relay log)
- SQL Thread:负责从中继日志读取事件并在从库上执行
这两个线程都采用单线程工作模式,当主库写入量较大时,特别是涉及大量DML操作时,SQL Thread很容易成为瓶颈,导致从库复制延迟不断增加。
并行复制的演进
MySQL 5.6的初步实现
在5.6版本中,首次引入了基于schema的并行复制。其核心思想是:
- 不同schema的DML操作可以并行执行
- 配置参数
slave_parallel_workers
设置工作线程数 - 主要适用场景:多个业务使用不同schema的情况
局限性:单schema内的操作仍然串行执行,对于单schema写入量大的场景改善有限。
MySQL 5.7的增强
5.7版本推出了基于逻辑时钟(logical timestamp)的并行复制:
- 引入
slave_parallel_type=LOGICAL_CLOCK
配置 - 使用组提交(group commit)信息判断哪些事务可以并行
- 新增
binlog_group_commit_sync_delay
和binlog_group_commit_sync_no_delay_count
参数控制主库组提交行为
优势:同一schema内的事务也可能并行执行,显著提升性能。
MySQL 8.0的优化
8.0版本进一步改进为基于写集合(writeset)的并行复制:
- 通过
binlog_transaction_dependency_tracking
参数控制 - 可选用WRITESET或WRITESET_SESSION模式
- 自动识别无冲突事务实现更细粒度的并行
特点:无需依赖组提交,减少主库性能影响,并行度更高。
应用场景与配置建议
适用场景
- 主库写入压力大的OLTP系统
- 报表系统需要低延迟的实时数据
- 读写分离架构中的从库
配置建议
# MySQL 5.7+ 推荐配置
slave_parallel_workers=8 # 根据CPU核心数设置
slave_parallel_type=LOGICAL_CLOCK # 或WRITESET(8.0+)
binlog_group_commit_sync_delay=10000 # 微妙单位,适当增加可提升并行度
性能考量
实际测试表明,在适当配置下,并行复制可以:
- 减少60%-80%的复制延迟
- CPU利用率提升30%-50%
- 对网络带宽需求基本不变
但需要注意,过度增加工作线程数可能导致锁竞争加剧,反而降低性能。建议根据实际负载逐步调整测试。
5.6并行复制原理
MySQL 5.6版本引入的并行复制是基于库级别的并行执行机制,其核心思想是通过多线程方式来提升从库的复制效率。具体实现原理如下:
-
多库并行机制:
- 当主库上有多个数据库(database)时,从库会为每个数据库分配一个独立的工作线程
- 这些线程可以并行应用不同数据库的事务变更
- 例如,如果主库有db1、db2、db3三个库,从库可以创建三个线程分别处理这些库的binlog事件
-
实现特点:
- 事务在从库上的执行顺序与主库保持一致
- 同一个数据库的事务仍保持串行执行
- 不同数据库之间的事务可以并行执行
- 系统会自动维护事务间的依赖关系
-
适用场景:
- 多租户系统,每个租户使用独立的数据库
- 业务系统按功能模块拆分到不同数据库
- 数据仓库环境中存在多个独立数据集市
-
性能影响:
- 对于单库环境,该机制无法提供性能提升
- 数据库数量越多,并行效果越明显
- 建议配置slave_parallel_workers参数为数据库数量的1.5-2倍
-
配置方式:
-- 启用并行复制 SET GLOBAL slave_parallel_workers = 4; -- 设置并行模式为按库并行 SET GLOBAL slave_parallel_type = 'DATABASE';
-
局限性:
- 无法处理单个大库的性能瓶颈
- 跨库事务仍需要串行处理
- 对DDL操作的支持有限
这种并行复制机制虽然简单,但对于典型的Web应用架构(如每个客户一个独立数据库)能带来显著的复制性能提升,平均可以减少30%-50%的复制延迟。
基于从库的并行复制,实现相对简单,使用也相对简单些,基于库的并行复制遇到的单库多表使用的场景就发挥不出优势了,另外对事物并行处理执行顺序也是个大的问题。
5.7 并行复制原理
MySQL 5.7 版本实现了基于组提交(Group Commit)的并行复制机制,这是真正意义上的并行复制技术。与之前版本相比,5.7 的并行复制有以下重大改进:
工作原理
- 组提交机制:在 Master 端,同一个组提交的事务会被分配相同的 commit_id,这些事务在 Slave 端可以并行回放
- 二进制日志改进:binlog 中新增了 last_committed 和 sequence_number 字段,用于标识事务的并行关系
- 协调机制:Slave 的 SQL 线程会解析这些标识,将可以并行执行的事务分配给不同的 worker 线程
核心优势
- 保持执行顺序一致性:Slave 的回放顺序与 Master 完全一致,确保数据一致性
- 突破库级限制:不同于 5.6 版本的基于库的并行复制,5.7 可以在同一个库内实现并行复制
- 动态并行度:并行度可以根据系统负载动态调整,通过参数 slave_parallel_workers 控制
实际应用场景
- 高并发写入环境:当 Master 有大量并发写入时,Slave 可以保持接近实时的同步
- 大事务处理:多个大事务可以并行回放,显著提升复制效率
- 多表操作场景:即使操作同一个库的不同表,也能实现并行复制
性能对比
测试表明,在典型的 OLTP 场景下:
- 相比 5.6 版本,5.7 并行复制性能提升可达 5-10 倍
- 延迟时间减少 80% 以上
- 资源利用率更高,CPU 多核优势得以充分发挥
配置参数
关键的配置参数包括:
- slave_parallel_type = LOGICAL_CLOCK
- slave_parallel_workers = (建议设置为 CPU 核心数的 2-4 倍)
- slave_preserve_commit_order = ON (确保事务最终提交顺序)
这种基于组提交的并行复制机制,使得 MySQL 5.7 在主从复制性能上实现了质的飞跃,为高并发场景下的数据同步提供了可靠保障。
MySQL 5.7 组提交并行复制的实现机制
MySQL 5.7 的并行复制通过引入事务分组机制显著提升了复制性能,其核心实现原理如下:
1. 事务分组机制
- 主库处理:当多个事务同时进入提交阶段时,系统会将这些事务划分为一个组
- 二进制日志标记:在写入二进制日志时,会为同一组的事务添加特殊的组提交标记
- 组内事务特性:同一个组内的事务满足以下条件:
- 无锁冲突
- 不修改相同的数据行
- 可以安全地并行执行
2. 实现原理
- Prepare阶段检测:在事务prepare阶段,系统会检测事务间的冲突关系
- 并行提交判断:所有通过prepare阶段检测的事务即被视为可并行提交
- 二进制日志写入:将可并行的事务作为一个组整体写入二进制日志
3. 从库并行执行
- 组信息解析:从库通过解析二进制日志中的组提交信息识别可并行执行的事务组
- 并行回放:同一组内的事务由不同的工作线程并行执行
- 执行保障:系统确保组内事务不会:
- 产生数据冲突
- 造成死锁
- 违反事务隔离级别
4. 技术优势
相比传统复制方案,这种实现方式具有以下优势:
- 完全规避冲突检测:通过组提交机制从根本上避免冲突
- 简化并发控制:不再需要复杂的并发算法和等待策略
- 显著提升性能:并行度更高,资源利用率更好
5. 应用场景示例
- 电商系统的高并发订单处理
- 社交媒体的用户行为日志记录
- 金融系统的批量交易处理
这种创新的并行复制思路代表了MySQL复制技术的重大进步,为高并发场景提供了更高效的复制解决方案。
InnoDB 事务提交采用的是两阶段提交(2PC)模式,这是确保事务原子性和持久性的重要机制。具体过程分为两个阶段:
-
prepare 阶段:
- 事务写入 redo log(重做日志),标记为 prepare 状态
- 此时事务已经完成所有修改操作,但尚未最终确认提交
- InnoDB 会确保 redo log 持久化到磁盘
-
commit 阶段:
- 事务写入 binlog(二进制日志)
- 将 redo log 标记为 commit 状态
- 完成事务提交
在 MySQL 5.6 版本中,主从复制采用的是基于库(database)的并行复制方式,即不同库的事务可以在从库并行执行。这种方式的并行度取决于数据库实例中的库数量。
为了提升复制性能,MySQL 5.7 引入了新的变量 slave-parallel-type
,该变量有以下两种配置值:
● DATABASE(默认值):
- 保持与 5.6 版本相同的基于库的并行复制方式
- 适用于多库环境,如分库分表场景
- 示例:如果有 db1、db2、db3 三个库,这三个库的事务可以在从库并行执行
● LOGICAL_CLOCK:
- 基于组提交(group commit)的并行复制方式
- 能在单库场景下实现更高并行度
- 工作原理:识别主库上同时进入 prepare 阶段的事务,这些事务可以在从库并行执行
- 性能优势:在 OLTP 场景下,特别是单库高并发写入时,可以显著提升复制性能
实际应用中选择哪种模式需要考虑:
- 数据库架构(多库还是单库)
- 工作负载特性(OLTP 或 OLAP)
- 对复制延迟的敏感度
在 MySQL 5.7 及更高版本中,建议在高并发写入场景下使用 LOGICAL_CLOCK 模式以获得更好的复制性能。
那么如何知道事务是否在同一个组中呢?
在MySQL中判断事务是否属于同一个组提交组,主要通过以下机制实现:
- 组提交标识机制:
- 同一个组内的事务会共享相同的组提交标识
- 这个标识会被记录在事务的元数据中
- 系统通过比较这个标识来判断事务是否属于同一组
- 具体实现方式:
- 在准备阶段,协调线程会为同一批提交的事务分配相同的组ID
- 这个组ID会随着事务一起持久化到日志中
- 在恢复或复制时,通过读取这个组ID来判断事务的组关系
生成的Binlog如何告诉Slave哪些事务是可以并行复制的?
MySQL通过以下几种方式在Binlog中标记可并行复制的事务:
- GTID机制:
- 每个事务都会被分配一个全局唯一的事务标识(GTID)
- 相同组提交组内的事务会被分配连续的GTID序列
- Slave通过分析GTID序列来判断事务的并行关系
- 具体标记方式:
- 在Binlog事件头中设置特殊的标志位
- 使用特定的日志事件类型来标识组边界
- 在事务元数据中记录组提交信息
- 通信协议:
- Master会通过Binlog事件将组提交信息传递给Slave
- Slave端的并行复制线程会解析这些信息
- 根据解析结果决定如何并行应用这些事务
MySQL 5.7中的实现细节
在MySQL 5.7版本中,具体通过以下设计实现组提交信息的传递:
- GTID方案:
- 默认将组提交信息存放在GTID中
- 每个GTID包含:source_id:transaction_id
- 相同组提交的事务会有连续的transaction_id
- 匿名GTID方案:
- 为兼容未开启GTID的场景(GTID_MODE=OFF)
- 引入ANONYMOUS_GTID_LOG_EVENT事件类型
- 这种事件会包含类似于GTID的组提交信息
- 但不会暴露给用户可见的GTID标识
- 实现特点:
- 无论是否开启GTID都能支持组提交信息传递
- 保证向下兼容性
- 对用户透明,不需要额外配置
- 在Binlog中以二进制形式存储,不占用太多空间
- 典型应用场景:
- 主从复制环境
- 基于Binlog的恢复场景
- 数据库迁移过程
- 数据同步工具的数据获取
通过 mysqlbinlog 工具分析 binlog 日志,就可以发现组提交的内部信息:
我们可以发现 MySQL 5.7 二进制较之前原来的二进制聂荣多了 last_commited 和 sequence_number,last_committed表示事务提交的时候,上次事务提交的编号,如果事务具有相同的 last_commited,表示这些事务都在一组内,可以进行并行的回放。
8.0并行复制原理
MySQL8.0是基于 write-set的并行复制,MySQL 一个集合变量来存储事务修改的记录信息(主键哈希值),所有已经提交的事务所修改的主键值经过Hash后都会与那个变量的集合进行对比,来判断该行是否冲突,并以此来确定依赖关系,没有冲突即可并行。
这样的粒度,就到 row 级别了,此时判断的粒度更加精细,并行的速度会更快。