九度OJ剑指offer中关于顺时针输出矩阵的问题分析

本文探讨了如何按顺时针方向输出矩阵元素的具体实现,通过解析螺旋矩阵规律,介绍了如何利用解析几何来划分矩阵并确定元素遍历路径,最终实现了矩阵元素的正确输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

顺时针输出矩阵,具体题目要求是将一个矩阵按照顺时针的顺序从矩阵边框开始依次遍历矩阵中的所有元素。题目要求乍一看可能觉得十分简单,也没有涉及十分复杂的数据结构,但是分析起来还是十分有意思的。

首先我们先看看要解决这个问题的基础:螺旋矩阵,不管是正螺旋还是反螺旋,其实质是一样的。螺旋矩阵的相关介绍这里就直接引用百科的相关描述。

螺旋矩阵的链接

下面思考下如何将螺旋矩阵和这个问题结合起来,其实螺旋矩阵的实质就是矩阵中元素的变化规律,我们如果结合了相关规律将我们需要输出的数组封入一个临时数组,最后将数组输出,这个问题就解决了。

然而螺旋矩阵中的变化规律不是简单就能描述的,我看别人写的代码的时候,加了注释都不一定能看懂。所以解决一个问题最重要的是要自己掌握解决问题的基本思路,否则你编码也只能是照本宣科,看不到本质是十分可怕的,所以我是十分鼓励大家去多自己研究下算法内部的运行机理的,这样才能融会贯通,可以做到举一反三。

螺旋矩阵规律分析:首先这里我们要引入x轴和y轴的概念,这样就可以直接和数学解析几何相结合,这个问题我们要解决的问题其本质就是矩阵中元素的运行轨迹,如果读者将螺旋矩阵的运行轨迹画出来,你就会很容易发现,两条对角线将这个矩阵分为四块,而这四块中的元素的运行规律是一样的,这就是为什么要引入解析几何的原因,将矩阵分为四块后,我们要分析下相关规律,这种变化只有四种可能(x++,y++,x--,y--),还有一个很重要的问题就是寻找下四个区域中分割线的归属问题,这个细节在程序中是很重要的,假如你的程序你觉得很正常就是会报错,你可能就要检查下边界上的“=”是否加错了位置,对于详细信息我会在源码中进行注释。

解决了螺旋矩阵,剩下就是与螺旋矩阵的顺序依次插入到临时数组中,这里我是选择的从内部到外部的顺序,如果选择从内到外,我在分析问题规律的时候发现会有冲突点,这一点上就增加了这个程序的困难度。

矩阵中开始点的选择也是有区别的,这取决于你输入矩阵的规模是奇数还是偶数,如果是奇数,这个没有问题,开始点就是中心点,但是如果规模是偶数的,矩阵并没有中心点,开始点是相对中心点的左下方点,这个点的选择读者可以自己归纳出来,至于证明为什么是这个点,笔者还没有进行过尝试,读者如果有兴趣不妨可以试试。

相关代码如下:

package jiuduOJ;

import java.util.Scanner;
/**
 * 按顺时针顺序打印矩阵,这是九度oj中关于剑指offer的一道题,我是结合了螺旋矩阵去解决这个问题的
*@author:Mr.wang
*@version:1.0
*@time:2015/11/4
 */
public class HelixMatrix 
{
	public static void main(String[] args) 
	{
		System.out.print("请输入一个矩阵的规模::");
		Scanner sc = new Scanner(System.in);
		int size = sc.nextInt();
		int y = size/2;
		int x = (size%2==0?size/2-1:size/2);//区分奇数偶数情况
		int count = 0;//临时矩阵的计数器
		int[][] ar =  new int[size][size];
		int[] t = new int[size*size];
		for(int i = 0; i <= size-1; i++)//键入一个测试矩阵
		{
			for(int j =0; j <= size-1; j++)
			{
				ar[i][j] = sc.nextInt();
			}
		}
		for(int i = size*size;i >= 1;i--)
		{
			if(x >= y&&x <= size -y-1)//四个分支对应的四个区域,if中的条件对应于相关对角线的解析式
			{
				t[count] = ar[y][x];
				count++;
				x--;//位置移动规律
			}
			else if(x < y&&x < size-y-1)
			   {
				 t[count] = ar[y][x];
				 count++;
				 y++;
			   }
			else if(x < y&&x >= size-y-1 )
			   {
			     t[count] = ar[y][x];
			     count++;
				 x++;
			   }
			else if(x >= y&&x > size-y-1)
			   {
			      t[count] = ar[y][x];
				  count++;
				  y--;
			   }
		}
		for(int k = size*size-1; k >= 0; k--)
			System.out.print(t[k]+" ");
	}
}


JFM7VX690T型SRAM型现场可编程门列技术手册主要介绍的是上海复旦微电子集团股份有限公司(简称复旦微电子)生产的高性能FPGA产品JFM7VX690T。该产品属于JFM7系列,具有现场可编程特性,集成了功能强大且可以灵活配置组合的可编程资源,适用于实现多种功能,如输入输出接口、通用数字逻辑、存储器、数字信号处理和时钟管理等。JFM7VX690T型FPGA适用于复杂、高速的数字逻辑电路,广泛应用于通讯、信息处理、工业控制、数据中心、仪表测量、医疗仪器、人工智能、自动驾驶等领域。 产品特点包括: 1. 可配置逻辑资源(CLB),使用LUT6结构。 2. 包含CLB模块,可用于实现常规数字逻辑和分布式RAM。 3. 含有I/O、BlockRAM、DSP、MMCM、GTH等可编程模块。 4. 提供不同的封装规格和工作温度范围的产品,便于满足不同的使用环境。 JFM7VX690T产品系列中,有多种型号可供选择。例如: - JFM7VX690T80采用FCBGA1927封装,尺寸为45x45mm,使用锡银焊球,工作温度范围为-40°C到+100°C。 - JFM7VX690T80-AS同样采用FCBGA1927封装,但工作温度范围更广,为-55°C到+125°C,同样使用锡银焊球。 - JFM7VX690T80-N采用FCBGA1927封装和铅锡焊球,工作温度范围与JFM7VX690T80-AS相同。 - JFM7VX690T36的封装规格为FCBGA1761,尺寸为42.5x42.5mm,使用锡银焊球,工作温度范围为-40°C到+100°C。 - JFM7VX690T36-AS使用锡银焊球,工作温度范围为-55°C到+125°C。 - JFM7VX690T36-N使用铅锡焊球,工作温度范围与JFM7VX690T36-AS相同。 技术手册中还包含了一系列详细的技术参数,包括极限参数、推荐工作条件、电特性参数、ESD等级、MSL等级、重量等。在产品参数章节中,还特别强调了封装类型,包括外形图和尺寸、引出端定义等。引出端定义是指对FPGA芯片上的各个引脚的功能和接线规则进行说明,这对于FPGA的正确应用和电路设计至关重要。 应用指南章节涉及了FPGA在不同应用场景下的推荐使用方法。其中差异说明部分可能涉及产品之间的性能差异;关键性能对比可能包括功耗与速度对比、上电浪涌电流测试情况说明、GTH Channel Loss性能差异说明、GTH电源性能差异说明等。此外,手册可能还提供了其他推荐应用方案,例如不使用的BANK接法推荐、CCLK信号PCB布线推荐、JTAG级联PCB布线推荐、系统工作的复位方案推荐等,这些内容对于提高系统性能和稳定性有着重要作用。 焊接及注意事项章节则针对产品的焊接过程提供了指导,强调焊接过程中的注意事项,以确保产品在组装过程中的稳定性和可靠性。手册还明确指出,未经复旦微电子的许可,不得翻印或者复制全部或部分本资料的内容,且不承担采购方选择与使用本文描述的产品和服务的责任。 上海复旦微电子集团股份有限公司拥有相关的商标和知识产权。该公司在中国发布的技术手册,版权为上海复旦微电子集团股份有限公司所有,未经许可不得进行复制或传播。 技术手册提供了上海复旦微电子集团股份有限公司销售及服务网点的信息,方便用户在需要时能够联系到相应的服务机构,获取最新信息和必要的支持。同时,用户可以访问复旦微电子的官方网站(***以获取更多产品信息和公司动态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值