Redis底层原理 (Redis LRU算法)(三)

Redis LRU算法解析:哈希链表实现
本文介绍了Redis中的LRU缓存淘汰算法,重点讲解了LRU算法的核心思想——最近最少使用,并详细阐述了利用哈希链表实现LRU的机制,包括如何快速查找、删除和添加节点,以及在需要替换内容时如何淘汰最少使用的缓存项。

LRU缓存淘汰算法

LRU是(Least Recently Used)最近最少使用策略的缩写,是根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。

LRU 算法的核心数据结构就是哈希链表,双向链表和哈希表的结合体。其设计思想:就是借助哈希表赋予了链表快速查找的特性,可以快速查找某个 key 是否存在缓存(链表)中,同时可以快速删除、添加节点。

哈希链表实现LRU

将Cache的所有位置都用双链表连接起来,当一个位置被命中之后,通过调整链表的指向,将该位置调整到链表/尾的位置,新加入的Cache直接加到链表/尾中。

这样,在多次进行Cache操作后,最近被命中的,就会被向链表/尾方向移动,而没有命中的,而向链表/头方向移动,链表/头则表示最近最少使用的Cache。

当需要替换内容时候,链表的/尾节点就是最少被命中的位置,我们只需要淘汰链表这部分即可。

 LRU算法设计:

package com.wang.redis.lru;

import java.util.LinkedHashMap;

public c
### Redis底层实现原理详解 Redis 是一个高性能的键值对存储系统,其底层实现涉及多个关键的数据结构算法设计。以下是 Redis 底层实现原理的详细解析。 #### 1. 数据存储与访问 Redis 的核心是一个键值对存储系统,底层可以理解为一个大的字典(map)[^3]。每个键(key)都是字符串类型,而值(value)可以是五种基本数据类型之一:字符串、列表、哈希、集合和有序集合。在 Redis 中,所有的键值对都存储在内存中,以确保快速的访问速度。 #### 2. 字符串对象(String Object) Redis 的字符串对象底层使用简单动态字符串(Simple Dynamic String, SDS)来实现[^2]。SDS 是一种改进版的 C 字符串,具有以下特点: - 额外的空间用于存储字符串长度和分配的总空间,避免频繁的内存分配。 - 提供了二进制安全的特性,允许存储任意数据。 - 减少了字符串操作中的内存重分配次数。 ```c struct sdshdr { int len; // 当前字符串长度 int alloc; // 分配的总空间 char buf[]; // 实际存储的字符串内容 }; ``` #### 3. 列表对象(List Object) Redis 的列表对象底层由链表实现,但为了提高内存利用率和性能,Redis 引入了快速列表(quicklist)[^2]。快速列表是一种基于压缩列表(ziplist)的双向链表结构,能够减少内存碎片并优化序列化性能。 #### 4. 哈希对象(Hash Object) Redis 的哈希对象底层由字典(dictionary)实现,字典的核心是哈希表。哈希表通过键值对的形式存储数据,并采用拉链法解决键冲突。为了减少重新哈希(rehash)时的阻塞问题,Redis 实现了渐进式 rehash 算法,将 rehash 操作分摊到多次请求中完成。 #### 5. 集合对象(Set Object) Redis 的集合对象底层由整数集合(intset)或哈希表实现。当集合中的元素全部为整数且数量较小时,Redis 使用整数集合存储,以节省内存。一旦集合中出现非整数元素或元素数量超过阈值,Redis 会自动将整数集合升级为哈希表。 #### 6. 有序集合对象(Sorted Set Object) Redis 的有序集合对象底层同时使用了字典和跳跃表(skiplist)两种数据结构。字典用于存储成员和分数之间的映射关系,而跳跃表则负责按分数排序。这种设计使得有序集合能够在 O(log N) 时间复杂度内完成插入、删除和查找操作。 关于为什么 Redis 使用跳跃表而不是平衡树,主要是因为跳跃表的实现更简单,且在多线程环境下更容易维护一致性[^2]。 #### 7. 内存管理与优化 Redis 在内存管理方面进行了大量优化,主要包括: - **压缩列表(ziplist)**:用于存储小规模的列表和哈希对象,减少内存开销。 - **对象共享(Object Sharing)**:对于一些常用的小整数,Redis 会复用相同的对象实例。 - **渐进式 rehash**:避免一次性 rehash 导致的阻塞问题。 - **空转时长(Lru Eviction)**:通过设置键的过期时间或使用 LRU 策略释放不再使用的键值对[^3]。 #### 8. 单线程模型与并发处理 Redis 采用单线程模型处理客户端请求,这简化了数据结构算法的实现,避免了多线程环境下的锁竞争问题[^1]。为了支持高并发访问,Redis 使用了异步 IO 和 pipelining 技术[^1],从而实现了高效的并发处理能力。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

仰望星空@脚踏实地

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值