SRMD:Learning a Single Convolutional Super-Resolution Network for Multiple Degradations

该研究针对超分辨率领域的挑战,提出了一种新的方法,称为SRMD,能够处理多种退化情况。通过将模糊核、噪声和低分辨率图像作为网络输入,SRMD克服了传统方法依赖bicubic下采样和单一退化模型的局限。通过维度拉伸策略,模糊核和噪声被转换为与图像匹配的维度,从而实现同时处理。实验表明,SRMD在合成和真实图像上的表现优于现有方法,且在网络结构设计上具有较高的灵活性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Learning a Single Convolutional Super-Resolution Network for Multiple Degradations

Kai Zhang, Wangmeng Zuo, Lei Zhang

CVPR2018

摘要

之前的方法都是用bicubic下采样的数据做LR,导致模型处理退化过程不符合bicubic的LR时效果差。另外一点就是前人的模型可扩展性差,因为用单一的退化模型训练得到的网络无法应对真实复杂的退化图像。基于这两个问题,论文同时考虑了模糊核和噪声等级,将模糊核、噪声、LR同时作为网络的输入,来得到一个更一般的适用于多种退化图像的超分辨率模型。

主要贡献

  1. 提出了扩展性较强的网络,更适用于处理实际问题。
  2. 提出了维度拉长策略,可以让模糊核和噪声的维度跟图像匹配。
  3. 论文提出的方法在合成图像和真实图像上效果突出。

主要方法

退化模型

y = (x\downarrow _{s})\otimes k +n,其中\downarrow_{s}表示下采样s倍,k是模糊核,n是加性噪声。

  1. k:超分辨率问题中不用将模糊核考虑的太复杂,简单的高斯模糊就可以。而对图像高斯模糊核的准确估计将对网络性能有显著提升。
  2. n:超分辨率问题中如果先去噪在超分辨率,会损失一些信息,如果不去噪直接超分辨率又会存在很多噪声,所以理想状态是同时去噪和超分辨率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值