文本摘要检查链演示
本文档展示了如何使用LLMSummarizationCheckerChain
与不同类型的文本进行交互的一些示例。它与LLMCheckerChain
有几个明显的区别,即它不对输入文本(或摘要)的格式有任何假设。
此外,由于大型语言模型(LLMs)在事实检查时容易产生幻觉或对上下文感到困惑,有时多次运行检查器是有益的。它通过将重写的“True”结果反馈给自己,并检查“事实”的真实性来实现这一点。正如下面的例子所示,这在得到一个通常真实的文本体方面非常有效。
你可以通过设置max_checks
参数来控制检查器运行的次数。默认值是2,但如果你不想进行任何双重检查,可以将其设置为1。
# 导入必要的库
from langchain.chains import LLMSummarizationCheckerChain
from langchain_openai import OpenAI
# 创建一个OpenAI实例,temperature=0表示生成结果时不加入随机性,确保结果的确定性
llm = OpenAI(temperature=0)
# 创建一个文本摘要检查链实例,verbose=True表示在执行过程中打印详细信息,max_checks=2表示最多运行两次检查
checker_chain = LLMSummarizationCheckerChain.from_llm(llm