这个文件是一个关于如何使用大型语言模型和 Python 进行符号数学计算的示例。它主要展示了如何求解导数、积分、线性方程和微分方程。底层技术栈包括 SymPy,一个 Python 的符号数学库,以及 OpenAI 的 API,用于生成确定性的结果。
LLM 符号数学
这个笔记本展示了如何使用大型语言模型(LLMs)和 Python 解决代数方程。其底层使用了 SymPy 库。
# 导入必要的库
from langchain_experimental.llm_symbolic_math.base import LLMSymbolicMathChain
from langchain_openai import OpenAI
# 创建一个 OpenAI 的实例,设置温度为 0 表示输出最确定的结果
llm = OpenAI(temperature=0)
# 从 OpenAI 实例创建一个符号数学链
llm