构建LangChain应用程序的示例代码:45、如何利用大型语言模型(LLMs)和 Python 库 SymPy 进行符号数学计算的教程

这个文件是一个关于如何使用大型语言模型和 Python 进行符号数学计算的示例。它主要展示了如何求解导数、积分、线性方程和微分方程。底层技术栈包括 SymPy,一个 Python 的符号数学库,以及 OpenAI 的 API,用于生成确定性的结果。

LLM 符号数学

这个笔记本展示了如何使用大型语言模型(LLMs)和 Python 解决代数方程。其底层使用了 SymPy 库。

# 导入必要的库
from langchain_experimental.llm_symbolic_math.base import LLMSymbolicMathChain
from langchain_openai import OpenAI

# 创建一个 OpenAI 的实例,设置温度为 0 表示输出最确定的结果
llm = OpenAI(temperature=0)

# 从 OpenAI 实例创建一个符号数学链
llm
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hugo_Hoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值