
构建LangChain应用程序的示例代码
文章平均质量分 70
构建LangChain应用程序的示例代码,重点是提供比官网文档中更多的应用性和端到端示例。
Hugo_Hoo
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
构建LangChain应用程序的示例代码:68、如何使用百度千帆平台和百度ElasticSearch实现检索增强生成(RAG)
本文档展示了如何使用百度千帆平台和百度ElasticSearch实现检索增强生成(RAG)。它涵盖了从BOS加载文档、文本分割、嵌入向量生成、向量存储、检索器创建到最终的问答系统实现的完整流程。该实现利用了百度云的多个服务,包括千帆大模型平台、ElasticSearch和对象存储(BOS),展示了如何集成这些服务来创建一个强大的RAG系统。原创 2024-07-17 17:15:13 · 1029 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:67、如何使用OpenAI函数实现文本引用提取
本文档展示了如何使用OpenAI的函数能力从文本中提取引用。它使用LangChain库创建了一个模糊匹配链,该链可以从给定的上下文中提取与问题相关的事实和证据。文档包括了完整的代码示例,演示了如何设置环境、创建链、运行查询以及格式化输出结果。原创 2024-07-17 17:11:14 · 366 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:66、如何使用LangChain实现程序辅助语言模型(PAL)
本文介绍了如何使用LangChain实现程序辅助语言模型(PAL)。PAL是一种结合了语言模型和程序执行的方法,可以处理复杂的数学问题和对象操作问题。文章展示了如何设置PAL链,并通过两个具体示例(数学问题和彩色对象问题)演示了其使用方法。最后,还介绍了如何获取PAL链的中间步骤。原创 2024-07-16 17:04:13 · 669 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:65、如何使用Kay.ai获取和处理新闻稿数据
本文介绍了如何使用Kay.ai提供的新闻稿数据服务。首先解释了新闻稿的重要性和Kay.ai的数据来源,然后详细说明了如何设置和使用Kay.ai的API来检索新闻稿信息。文章还提供了一个使用LangChain和OpenAI结合Kay.ai数据的具体示例。原创 2024-07-16 17:00:43 · 896 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:64、计划与执行式智能体的概念、实现方法和应用示例
本文档介绍了计划与执行式智能体的概念、实现方法和应用示例。计划与执行式智能体的基本原理所需库的导入工具的定义和设置规划器、执行器和智能体的创建运行示例,展示智能体如何解决复杂问题。原创 2024-07-15 16:23:32 · 842 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:63、如何使用Petting Zoo库定义和运行多智能体模拟环境
这个文件展示了如何使用Petting Zoo库定义和运行多智能体模拟环境。定义了一个基础的GymnasiumAgent类扩展出PettingZooAgent类以适应多智能体环境进一步定义了ActionMaskAgent类来处理带动作掩码的环境展示了在石头剪刀布、井字棋和德州扑克无限注环境中使用这些智能体的例子。原创 2024-07-15 16:21:07 · 1400 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:62、如何使用Oracle AI向量搜索和Langchain构建端到端的RAG(检索增强生成)pipeline
本指南突出了Oracle AI向量搜索的强大功能,包括与关系型数据的结合、广泛的文档格式支持、灵活的嵌入和摘要生成选项,以及优化的搜索性能。原创 2024-07-10 17:36:26 · 1445 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:61、如何使用 LangChain 和 LangSmith 优化链
本文档介绍了如何使用 LangChain 和 LangSmith 来优化问答链。设置环境和加载数据创建初始检索链运行示例并进行标注创建数据集使用少量示例进行优化。原创 2024-07-10 17:21:32 · 832 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:60、探索 OpenAI V1 新功能及其在 LangChain 中的应用
这个文档详细介绍了 OpenAI 在 2023 年 11 月 6 日发布的新功能,以及如何在 LangChain 框架中使用这些功能原创 2024-07-09 17:17:01 · 1876 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:59、如何使用OpenAI函数来结构化问答系统的输出
本文介绍了如何使用OpenAI函数来结构化问答系统的输出。使用OpenAI函数创建基本的问答链使用Pydantic模型定义输出结构在对话检索链中应用结构化输出自定义输出模式以包含额外信息。原创 2024-07-09 17:12:07 · 426 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:58、如何使用 Nomic 的新嵌入模型构建和部署一个检索增强生成(RAG)应用
本文档介绍了如何使用 Nomic 的新嵌入模型构建和部署一个检索增强生成(RAG)应用。Nomic 嵌入模型的介绍设置和登录 Nomic API加载和分割文档使用 Nomic 嵌入创建向量索引构建 RAG 链,包括检索器和语言模型使用 LangServe 部署 RAG 应用文档还讨论了长上下文检索的考虑因素,以及使用不同的语言模型选项(如 Mistral 和 GPT-4)。原创 2024-07-08 17:46:52 · 1320 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:57、如何使用 MyScale 向量数据库和 LangChain 库来创建一个向量 SQL 检索器
这个文件介绍了如何使用 MyScale 向量数据库和 LangChain 库来创建一个向量 SQL 检索器。设置 MyScale 数据库连接创建向量 SQL 数据库链使用向量 SQL 数据库链进行查询将 SQL 数据库用作检索器创建和使用检索 QA 链文件中的代码示例展示了如何配置和使用这些组件来执行语义搜索和问答任务。原创 2024-07-08 17:43:31 · 739 阅读 · 1 评论 -
构建LangChain应用程序的示例代码:56、如何实现一个多智能体模拟,其中没有固定的发言顺序。智能体自行决定谁来发言,通过竞价机制实现
定义参与辩论的人物和辩论主题# character_names: 参与者姓名列表# topic: 辩论主题# word_limit: 回答字数限制最后,我们将定义一个发言人选择函数,它接受每个智能体的出价并选择出价最高的智能体(同分随机打破平局)。我们将定义一个函数,使用我们之前定义的bid_parser来解析智能体的出价。我们将使用tenacity来装饰,在智能体的出价无法正确解析时多次重试,并在达到最大尝试次数后生成默认出价0。原创 2024-07-05 17:33:50 · 1328 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:55、如何实现多代理模拟,其中特权代理决定谁发言。这遵循与多代理分散发言者选择相反的选择方案
定义讨论话题、主持人名称、参与者信息和字数限制最后我们将定义一个说话者选择函数,它接受每个代理的出价并选择出价最高的代理(随机打破平局)。我们将定义一个函数,它使用我们之前定义的bid_parser来解析代理的出价。我们将使用tenacity来装饰,以便在代理的出价无法正确解析时多次重试,并在最大尝试次数后产生默认出价0。) -> int:"""如果步骤是偶数,则选择导演否则,由导演选择下一个说话者。"""# 导演在奇数步骤说话idx = 0else:# 这里导演选择下一个说话者。原创 2024-07-05 17:26:54 · 999 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:54、如何使用`DialogueAgent`和`DialogueSimulator`类来扩展两人《龙与地下城》示例到多人游戏
这个文件展示了如何使用和类来扩展两人《龙与地下城》示例到多人游戏。主要区别在于修改了每个代理发言的调度方式。文件包含了代理类的定义、角色和任务的设置、使用语言模型生成详细描述,以及主要的对话模拟循环。原创 2024-07-04 17:36:11 · 850 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:53、利用多模态大型语言模型在RAG应用中处理混合文档的示例
本文介绍了如何在检索-生成(RAG)应用中结合使用多模态大型语言模型(LLMs),如GPT-4V,来处理包含文本和图像的混合文档。文章首先强调了在RAG中整合图像信息的重要性,并提出了使用非结构化工具来解析PDF中的图像、文本和表格的方法。接着,介绍了如何利用多模态嵌入(例如CLIP)和VDMS作为矢量存储来嵌入和检索图像和文本。文章还提供了详细的代码示例,包括如何启动VDMS服务器、加载数据、创建多模态嵌入、构建RAG链,以及如何测试检索和RAG链的运行。原创 2024-07-04 17:25:55 · 1696 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:52、如何使用 Chroma 和 Google 实现多模态检索增强生成 (RAG)
本文件详细介绍了如何使用 Chroma 和 Google 实现多模态检索增强生成 (RAG)。主要内容包括系统的整体架构、关键组件、代码实现以及应用示例。文中展示了如何将文本和图像数据结合,利用检索技术增强生成模型的性能。具体代码部分提供了详细的实现步骤,并辅以注释以帮助理解。原创 2024-07-03 17:43:53 · 667 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:51、如何使用 Chroma 实现多模态检索增强生成 (RAG)
本文件详细介绍了如何使用 Chroma 实现多模态检索增强生成 (RAG)。主要内容包括系统的整体架构、关键组件、代码实现以及应用示例。文中展示了如何将文本和图像数据结合,利用检索技术增强生成模型的性能。具体代码部分提供了详细的实现步骤,并辅以注释以帮助理解。原创 2024-07-03 17:34:28 · 1865 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:50、如何在检索-生成 (RAG) 应用中利用多模态大型语言模型 (LLM) 处理包含文本和图像的混合文档的示例
本文探讨了在检索-生成(RAG)应用中,如何利用多模态大型语言模型(LLM)处理混合文档,这类文档通常包含文本和图像。文章提出了三种集成图像到RAG流程的方法,特别强调了第三种方法,即直接使用多模态LLM生成答案。通过非结构化工具解析PDF文件,结合Chroma多向量检索器和GPT-4V模型,文章展示了如何提取和处理图像、文本和表格数据。提供的代码示例涵盖了从环境配置到数据加载、多模态数据处理、检索器构建,以及最终的RAG链的实现。原创 2024-07-02 18:01:22 · 1770 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:49、如何使用 OpenAI 的 GPT-4 和 LangChain 库实现多模态问答系统
本指南介绍了如何使用 OpenAI 的 GPT-4 和 LangChain 库实现多模态问答系统。文中包含了加载图像、编码图像为 base64 字符串、使用 HTML 标签显示图像,以及结合文本和图像信息进行问答的具体步骤。原创 2024-07-02 17:42:47 · 1317 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:48、如何使用非文本生成工具创建多模态代理
本文介绍了如何使用非文本生成工具创建多模态代理。示例限于文本和图像输出,并使用UUID在工具和代理之间传输内容。文章使用Steamship来生成和存储图像,并展示了如何使用DALL-E和Stable Diffusion模型生成图像。原创 2024-07-01 17:46:49 · 418 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:47、使用MongoDB和LangChain为RAG应用添加语义缓存和记忆功能
本文介绍了如何在RAG(检索增强生成)应用中使用MongoDB的新功能MongoDBCache和MongoDBChatMessageHistory。文章详细说明了安装必要库、设置先决条件、下载并分析数据集、创建简单的RAG链、添加聊天历史功能,以及使用语义缓存来加速响应等步骤。这些技术可以显著提高RAG应用的性能和用户体验。原创 2024-07-01 17:42:52 · 1371 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:46、使用 Meta-Prompt 构建自我改进代理的 LangChain 实现
本文详细介绍了 Meta-Prompt 方法在 LangChain 中的实现。Meta-Prompt 是一种自我反思和自我改进的方法,通过在每次交互后生成自我批评和新指令来实现。这种方法使得代理能够在没有外部记忆的情况下,通过不断修改自己的指令来提高性能和满足用户需求。通过定义两个链——一个作为助手,另一个作为元链——以及使用来存储对话历史,代理可以在每次迭代中学习和改进。原创 2024-06-27 17:53:54 · 1770 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:45、如何利用大型语言模型(LLMs)和 Python 库 SymPy 进行符号数学计算的教程
本文件是一个关于如何利用大型语言模型(LLMs)和 Python 库 SymPy 进行符号数学计算的教程。通过使用类和OpenAIAPI,我们可以方便地求解导数、积分、线性方程和微分方程等数学问题。代码示例和注释提供了对这些问题求解过程的深入理解,并介绍了相关的数学概念和技术栈。原创 2024-06-27 17:48:35 · 540 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:44、文本摘要检查链,如何使用LLMSummarizationCheckerChain与不同类型的文本进行交互的一些示例
本文档是一个文本摘要检查链的示例,它演示了如何使用langchain库中的类来验证和确保文本摘要的准确性。文档中的代码展示了如何使用OpenAI类与OpenAI的API进行交互,并设置了检查的最大次数以提高结果的准确性。文档中的三个示例展示了LLMSummarizationCheckerChain类在不同场景下的应用。第一个示例演示了如何检查关于詹姆斯·韦伯太空望远镜的科学发现的描述。第二个示例展示了对地理信息描述的检查,而第三个示例则演示了如何识别并纠正逻辑错误的陈述。原创 2024-06-26 17:04:27 · 971 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:43、如何使用大型语言模型(LLMs)和Python REPLs(Read-Eval-Print Loops)来解决复杂的数学问题
本文档是一个数学链计算的示例,它演示了如何利用大型语言模型和Python REPLs来解决数学问题。文档中的代码展示了如何使用langchain库中的类来执行数学运算,并通过OpenAI类与OpenAI的API进行交互。原创 2024-06-26 16:58:22 · 436 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:42、如何使用 `LLMCheckerChain` 来验证和校正由大型语言模型(LLM)生成的文本
本指南介绍了如何使用对由 LLM 生成的文本进行自我检查和校正。通过设置不同的参数,可以调整输出结果的随机性,并获取更多运行时的详细信息。原创 2024-06-24 18:19:34 · 449 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:41、如何结合使用大型语言模型(LLMs)和 bash 进程来执行简单的文件系统命令指南
你还可以自定义使用的提示。# 定义提示模板,指定任务执行步骤和 bash 命令格式如果有人要求你执行一个任务,你的工作是想出一系列 bash 命令来执行该任务。在回答中没有必要写入 "#!/bin/bash"。确保使用以下格式逐步推理:问题:"将名为 'target' 的目录中的文件复制到与 'target' 同级的名为 'myNewDirectory' 的新目录中"我需要采取以下行动:- 列出目录中的所有文件- 创建一个新目录- 将文件从一个目录复制到另一个目录bashls。原创 2024-06-24 18:16:39 · 551 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:40、如何使用各种本地版本的 LLaMA2 进行文本到SQL的转换指南
开源的本地大型语言模型(LLMs)非常适合那些需要数据隐私的应用场景。SQL是一个很好的例子。本指南展示了如何使用各种本地版本的 LLaMA2 进行文本到SQL的转换。本指南详细介绍了如何将 LLaMA2 模型与 SQL 数据库结合使用,以实现文本到 SQL 查询的转换,并提供了如何通过代码实现这一过程的详细步骤。通过使用本地模型和外部 API,我们能够保持数据的隐私性,同时利用大型语言模型的强大能力来处理复杂的查询任务。原创 2024-06-24 18:09:33 · 1182 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:39、如何通过强化学习自动选择和注入提示变量,以增强LLM的响应质量。使用LangChain和VowpalWabbit构建一个自动化推荐系统
本文展示了如何通过强化学习自动选择和注入提示变量,以增强LLM的响应质量。通过一个餐饮服务的示例,我们了解了如何使用LangChain和VowpalWabbit来构建一个自动化的提示选择系统。随着模型的学习和数据的积累,该系统能够更好地理解用户偏好并做出更加精准的个性化推荐。原创 2024-06-19 18:22:22 · 1463 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:38、自主RAG的概念及其实现方法,使用LangChain和OpenAI工具从头开始构建一个结合检索和生成的系统
在本文中,我们介绍了自主RAG的概念及其实现方法,使用LangChain和OpenAI工具从头开始构建一个结合检索和生成的系统。通过对多个博客文章进行索引和处理,我们展示了如何利用这些工具进行高效的信息检索和回答生成。本文还补充了相关的技术知识,帮助读者更好地理解和应用这些技术。原创 2024-06-19 17:59:03 · 1117 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:37、基于LangGraph的文档检索与答案生成系统教程
本文介绍了一个使用LangGraph实现的系统,该系统通过文档检索、文档评估、问题转换和网络搜索等步骤,来生成针对特定问题的答案。系统的核心是一个状态图,它定义了各个节点和边,通过这些节点和边来控制整个检索和生成流程。代码中使用了多个库,包括langchain等,这些库为系统提供了文本分割、文档加载、向量存储、嵌入和检索等功能。原创 2024-06-18 17:46:32 · 1288 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:36、基于LangGraph的检索代理实现教程
本文介绍了如何使用 LangGraph 和 LangChain 构建一个检索代理系统。通过定义文档加载器、文本拆分器和向量数据库,我们实现了一个能够从指定网页中检索信息的代理工具。该系统展示了大型语言模型在信息检索领域的强大能力,同时也提供了一个灵活的框架,便于扩展和定制。原创 2024-06-18 17:23:13 · 733 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:35、如何使用假设性文档嵌入(HyDE)技术来改善文档索引教程
除了使用预配置的提示外,我们也可以轻松构建自己的提示,并在生成文档的LLMChain中使用它们。如果我们知道查询将涉及的领域,这将非常有用,因为我们可以调整提示以生成更类似于该领域的文本。以下示例中,我们将提示条件设置为生成有关国情咨文的文本。# 定义自定义提示模板prompt_template = """请回答用户关于最近一次国情咨文的问题问题:{question}答案:"""# 创建提示模板对象# 初始化使用自定义提示的LLMChain# 使用自定义提示加载HyDE# 嵌入查询。原创 2024-06-17 18:23:18 · 957 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:34、LangChain中的HumanInputLLM使用指南
本文介绍了如何使用LangChain社区的HumanInputLLM类来模拟人类输入,以便于在不调用真实语言模型的情况下测试和调试。通过定义一个简单的提示打印函数,我们能够模拟语言模型接收到的输入,并观察代理如何处理这些输入。类似于假的语言模型(LLM),LangChain 提供了一个伪语言模型类,可以用于测试、调试或教育目的。这允许你模拟对LLM的调用,并模拟如果人类接收到提示会如何响应。我们首先在代理中使用HumanInputLLM。在本示例中,我们将介绍如何使用这个功能。原创 2024-06-17 18:20:20 · 401 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:33、如何在LangChain框架中使用HumanInputChatModel来模拟人工输入的聊天模型教程
本文介绍了如何在LangChain框架中使用来模拟人工输入的聊天模型。通过这种方式,可以方便地进行测试、调试或教育演示,而无需实际调用外部的聊天模型。文中还展示了如何加载工具和初始化代理,以及如何使用代理来回答问题。原创 2024-06-13 16:15:09 · 604 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:32、如何为任何工具添加人工验证教程
本文介绍了如何在自动化工具中添加人工验证流程,以确保操作的安全性和准确性。通过使用,可以对特定工具或输入进行人工审批,从而避免潜在的风险。文中还展示了如何配置回调处理器,以实现对特定条件的灵活控制。原创 2024-06-13 16:13:23 · 363 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:31、连接大型语言模型与机器学习社区的系统-HuggingGPT教程
本文介绍了HuggingGPT系统,这是一个将大型语言模型(如ChatGPT)与机器学习社区(如Hugging Face)连接起来的系统。通过设置Transformers Agent提供的工具库和一些定制工具,HuggingGPT能够执行多种任务,包括文档问答、图像描述、图像问答等。通过创建HuggingGPT实例并使用ChatGPT作为控制器,可以管理和调度这些工具来执行复杂的任务。它包括由Transformers支持的工具库以及一些定制工具,如图像生成器、视频生成器、文本下载器等。原创 2024-06-12 17:27:02 · 723 阅读 · 2 评论 -
构建LangChain应用程序的示例代码:30、使用Gymnasium,定义代理在模拟环境中进行交互教程
在许多大型语言模型(LLM)代理的应用中,环境是真实的(如互联网、数据库、REPL等)。然而,我们也可以定义代理在模拟环境中进行交互,例如基于文本的游戏。以下是使用Gymnasium(前称OpenAI Gym)创建简单的代理-环境交互循环的一个示例。类初始化了一个代理。在主循环中,代理根据观察结果执行动作,环境根据这些动作进行更新,并返回新的观察结果和奖励。这个过程一直持续,直到环境终止。本文介绍了如何在Gymnasium环境中创建一个简单的代理-环境交互循环。类,我们能够实现代理对环境的观察和动作响应。原创 2024-06-12 17:20:04 · 369 阅读 · 0 评论 -
构建LangChain应用程序的示例代码:29、LangChain中的生成代理指南
由于Tommie还没有进行任何观察,当前不能生成角色的"Summary"# Tommie有了'memories'之后,他们的自我总结更加描述性在代码中,函数用于将FAISS检索器返回的分数转换为相似度评分,范围在0到1之间。函数初始化一个新的记忆检索器,用于代理的记忆管理。类用于创建具有个性特征的角色,如Tommie和Eve。每个角色都有自己的记忆检索器、语言模型和记忆对象。本文介绍了一种基于Park等人的论文《生成性代理:人类行为的交互式仿真》实现的生成性代理。原创 2024-06-11 17:52:01 · 758 阅读 · 0 评论