Pytorch多GPU计算之torch.nn.DataParallel()

本文探讨PyTorch中利用`torch.nn.DataParallel()`实现多GPU计算,包括简单示例、性能影响因素及模型的保存与加载。通过实验,对比单GPU与双GPU训练时间,显示多GPU显著提升了计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pytorch中的GPU操作默认是异步的,当调用一个使用GPU的函数时,这些操作会在特定设备上排队但不一定在稍后执行。这就使得pytorch可以进行并行计算。但是pytorch异步计算的效果对调用者是不可见的。

但平时我们用的更多其实是多GPU的并行计算,例如使用多个GPU训练同一个模型。Pytorch中的多GPU并行计算是数据级并行,相当于开了多个进程,每个进程自己独立运行,然后再整合在一起。

注:多GPU计算的前提是你的计算机上得有多个GPU,在cmd上输入nvidia-smi来查看自己的设备上的GPU信息。

1. 多GPU计算的简单例子

一般我们使用torch.nn.DataParallel()这个函数来进行接下来我将用一个例子来演示如何进行多GPU计算。

net = torch.nn.Linear(10,1)
print(net)
print('---------------------')
net = torch.nn.DataParallel(net, device_ids=
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值