数据结构和算法学习(一)-概述

本文介绍了算法和数据结构的基础知识,包括算法在数学和计算机科学中的定义,以及算法的时间复杂度和空间复杂度的重要性。同时阐述了数据结构如线性结构、树和图的类型,强调了数据结构在实现算法中的作用。最后,讨论了时间复杂度的常见量级和空间复杂度的计算方法,以及在时间和空间之间如何进行取舍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       打算开始学习下JAVA的数据结构与算法,找到了 《漫画算法:小灰的算法之旅》一书,此组文章记录一些学习的内容

 

一、什么是算法
        数学领域:算法(algorithm)是用于解决某一类问题的公式和思想
        计算机科学领域:它的本质是一系列程序指令,用于解决特定的运算和逻辑问题

                算法邮件的,也有复杂的         
                算法有高效的,也有拙劣的
                算法的应用领域多种多样


        1、衡量算法好坏的重要标准
                时间复杂度         
                空间复杂度
        2、算法应用领域
                运算
                查找
                排序
                最优决策
                面试~
二、什么是数据结构
        数据结构(data structure)是数据的组织、管理和存储方式,其使用目的是为了高效的访问和修改数据

        1、数据结构的组成方式

                1)、线性结构

                        线性结构是最简单的数据结构,包括数组、链表,以及有他们衍生出来的栈、队列、哈希表

                2)、树

                        树是相对复杂的数据结构,其中比较有代表性的是二叉树,由它又衍生出了二叉堆之类的数据结构。

                3)、图

                        图是更为复杂的数据结构,因为在图中会呈现出多对多的关联关系。

                        

                4)、其他数据结构

                        们由基本数据结构变形而来,用于解决某些特定问题,如跳表、哈希链表、位图等。

        有了数据结构,算法才有使用的场景:

                排序算法中的堆排序,利用的就是二叉堆这样一种数据结构;

                再如缓存淘汰算法LRU(Least Recently Used,最近最少使用),利用的就是特殊数据结构哈希链表。

三、时间复杂度

        1、算法的好与坏

                运行时间的长短和占用内存空间的大小,是衡量程序好坏的重要因素。

        2、基本操作执行次数

                设T(n)为程序基本操作执行次数的函数(也可以认为是程序的相对执行时间函数),n为输入规模

                T(n) = 3n,执行次数是线性的。

                T(n) = 5logn,执行次数是用对数计算的。

                T(n) = 2,执行次数是常量。

                T(n) = 0.5n2 + 0.5n,执行次数是用多项式计算的。

        3、渐进时间复杂度     

                有了基本操作执行次数的函数T(n),是否就可以分析和比较代码的运行时间了呢?还是有一定困难的。

                例如算法A的执行次数是T(n)= 100n,算法B的执行次数是T(n)=5n2,这两个到底谁的运行时间更长一些呢?这就要看n的取值了。

                因此,为了解决时间分析的难题,有了渐进时间复杂度(asymptotic time complexity)的概念,其官方定义如下。

                若存在函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称为O(f(n)),O为算法的渐进时间复杂度,简称为时间复杂度。

                因为渐进时间复杂度用大写O来表示,所以也被称为大O表示法。

 

                直白地讲,时间复杂度就是把程序的相对执行时间函数T(n)简化为一个数量级,这个数量级可以是n、n2、n3等。

                如何推导出时间复杂度呢?有如下几个原则。

                        如果运行时间是常数量级,则用常数1表示

                        只保留时间函数中的最高阶项

                        如果最高阶项存在,则省去最高阶项前面的系数

                

                T(n) = 3n,

                最高阶项为3n,省去系数3,则转化的时间复杂度为:T(n)=O(n)。

                T(n) = 5logn,

                最高阶项为5logn,省去系数5,则转化的时间复杂度为:T(n)=O(logn)。

                T(n) = 2,

                只有常数量级,则转化的时间复杂度为:T(n) =O(1)。

                T(n) = 0.5n2+ 0.5n,

                最高阶项为0.5n2,省去系数0.5,则转化的时间复杂度为:T(n)=O(n2)。

 

                当n的取值足够大时,不难得出下面的结论:

                O(1)<O(logn)<O(n)<O(n2)

 

                在编程的世界中有各种各样的算法,除了上述4个场景,还有许多不同形式的时间复杂度,例如:

                O(nlogn)、O(n3)、O(mn)、O(2n)、O(n!)

        4、时间复杂度的巨大差异

                算法A的执行次数是T(n)= 100n,时间复杂度是O(n)。

                算法B的执行次数是T(n)= 5n2,时间复杂度是O(n2)。

                算法A运行在老旧电脑上,算法B运行在超级计算机上,超级计算机的运行速度是老旧电脑的100倍。

                那么,随着输入规模n的增长,两种算法谁运行速度更快呢?

                从上面的表格可以看出,当n的值很小时,算法A的运行用时要远大于算法B;当n的值在1000左右时,算法A和算法B的运行时间已经比较接近;随着n的值越来越大,甚至达到十万、百万时,算法A的优势开始显现出来,算法B的运行速度则越来越慢,差距越来越明显。

                这就是不同时间复杂度带来的差距。

四、空间复杂度

        1、什么是空间复杂度

                内存空间是有限的,在时间复杂度相同的情况下,算法占用的内存空间自然是越小越好。如何描述一个算法占用的内存空间的大小呢?这就用到了算法的另一个重要指标——空间复杂度(space complexity)。

                和时间复杂度类似,空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度,它同样使用了大O表示法。程序占用空间大小的计算公式记作S(n)=O(f(n)),其中n为问题的规模,f(n)为算法所占存储空间的函数。

        2、空间复杂度的计算

                常量空间

                        当算法的存储空间大小固定,和输入规模没有直接的关系时,空间复杂度记作O(1)。

                线性空间

                        当算法分配的空间是一个线性的集合(如数组),并且集合大小和输入规模n成正比时,空间复杂度记作O(n)。

                二维空间

                        当算法分配的空间是一个二维数组集合,并且集合的长度和宽度都与输入规模n成正比时,空间复杂度记作O(n2)。

                

                递归空间

                        递归是一个比较特殊的场景。虽然递归代码中并没有显式地声明变量或集合,但是计算机在执行程序时,会专门分配一块内存,用来存储“方法调用栈”。

                        “方法调用栈”包括进栈和出栈两个行为。

                        当进入一个新方法时,执行入栈操作,把调用的方法和参数信息压入栈中。

                        当方法返回时,执行出栈操作,把调用的方法和参数信息从栈中弹出。

                        最终,“方法调用栈”的全部元素会一一出栈。

                        由上面“方法调用栈”的出入栈过程可以看出,执行递归操作所需要的内存空间和递归的深度成正比。纯粹的递归操作的空间复杂度也是线性的,如果递归的深度是n,那么空间复杂度就是O(n)。

        3、时间与空间的取舍

                人们之所以花大力气去评估算法的时间复杂度和空间复杂度,其根本原因是计算机的运算速度和空间资源是有限的。

                但是,正所谓鱼和熊掌不可兼得。很多时候,我们不得不在时间复杂度和空间复杂度之间进行取舍。

                在绝大多数时候,时间复杂度更为重要一些,我们宁可多分配一些内存空间,也要提升程序的执行速度。

五、小结

        什么是算法

                在计算机领域里,算法是一系列程序指令,用于处理特定的运算和逻辑问题。

                衡量算法优劣的主要标准是时间复杂度和空间复杂度。

        什么是数据结构

                数据结构是数据的组织、管理和存储格式,其使用目的是为了高效地访问和修改数据。

                数据结构包含数组、链表这样的线性数据结构,也包含树、图这样的复杂数据结构。

        什么是时间复杂度

                时间复杂度是对一个算法运行时间长短的量度,用大O表示,记作T(n)=O(f(n))。

                常见的时间复杂度按照从低到高的顺序,包括O(1)、O(logn)、O(n)、O(nlogn)、O(n2)等。

        什么是空间复杂度

                空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度,用大O表示,记作S(n)=O(f(n))。

                常见的空间复杂度按照从低到高的顺序,包括O(1)、O(n)、O(n2)等。其中递归算法的空间复杂度和递归深度成正比。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thunder_C

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值