摘要
随着互联网技术的快速发展,音乐流媒体平台已成为人们日常生活中不可或缺的一部分。用户对个性化音乐推荐的需求日益增长,传统的推荐方式已无法满足多样化的需求。协同过滤算法通过分析用户历史行为数据,挖掘用户潜在兴趣,能够有效提升推荐系统的精准度。本系统结合 Django 后端框架与 Vue 前端框架,采用 PostgreSQL 数据库存储海量用户行为数据,构建了一个高效、可扩展的音乐推荐平台。系统通过分析用户评分、收藏等行为数据,实现基于用户的协同过滤推荐,优化用户体验。关键词:音乐推荐系统、协同过滤、Django、Vue、PostgreSQL、个性化推荐。
本系统采用前后端分离架构,后端使用 Django 框架实现 RESTful API,提供用户管理、音乐信息管理、推荐算法计算等功能。前端使用 Vue.js 构建交互式用户界面,支持音乐播放、收藏、评分等操作。系统通过 PostgreSQL 存储用户数据、音乐元数据及用户行为数据,利用协同过滤算法计算用户相似度,生成个性化推荐列表。系统部署采用 Nginx 反向代理与 Gunicorn 应用服务器,确保高并发场景下的稳定性。关键词:RESTful API、用户行为分析、Nginx、Gunicorn、高并发、推荐算法。
数据表
音乐推荐系统平台涉及多个核心数据表,用于存储用户信息、音乐数据、用户行为记录及推荐结果。音乐数据表记录歌曲的基本信息,用户行为表存储用户对音乐的操作记录,推荐记录表保存算法生成的推荐结果,用户表管理用户账户信息。结构表如下所示:
表 3-1:用户信息表(user_profile)
该表存储用户注册信息及个人偏好数据,用户 ID 为主键,注册时间由系统自动生成。
字段名 | 数据类型 | 说明 |
---|---|---|
user_id | BIGINT | 用户唯一标识,主键 |
username | VARCHAR(50) | 用户名,唯一 |
VARCHAR(100) | 用户邮箱,唯一 | |
password_hash | VARCHAR(128) | 密码哈希值 |
register_time | TIMESTAMP | 注册时间,自动生成 |
last_login | TIMESTAMP | 最后登录时间 |
表 3-2:音乐数据表(music_metadata)
该表存储音乐的基本信息,音乐 ID 为主键,包含歌曲名称、歌手、专辑等元数据。
字段名 | 数据类型 | 说明 |
---|---|---|
music_id | BIGINT | 音乐唯一标识,主键 |
title | VARCHAR(100) | 歌曲名称 |
artist | VARCHAR(50) | 歌手名称 |
album | VARCHAR(50) | 专辑名称 |
release_year | INTEGER | 发行年份 |
genre | VARCHAR(30) | 音乐流派 |
表 3-3:用户行为表(user_behavior)
该表记录用户对音乐的操作行为,行为 ID 为主键,包含用户 ID 和音乐 ID 的外键关联。
字段名 | 数据类型 | 说明 |
---|---|---|
behavior_id | BIGINT | 行为记录唯一标识,主键 |
user_id | BIGINT | 关联用户 ID,外键 |
music_id | BIGINT | 关联音乐 ID,外键 |
action_type | VARCHAR(20) | 行为类型(播放/收藏/评分) |
action_value | FLOAT | 行为数值(如评分) |
action_time | TIMESTAMP | 行为发生时间 |
表 3-4:推荐记录表(recommendation_result)
该表存储协同过滤算法生成的推荐结果,推荐 ID 为主键,包含用户 ID 和目标音乐 ID。
字段名 | 数据类型 | 说明 |
---|---|---|
recommend_id | BIGINT | 推荐记录唯一标识,主键 |
user_id | BIGINT | 目标用户 ID,外键 |
music_id | BIGINT | 推荐音乐 ID,外键 |
similarity_score | FLOAT | 用户相似度得分 |
generate_time | TIMESTAMP | 推荐生成时间 |
博主介绍: |
🎓 东南大学计算机科学与技术专业在读研究生 | CSDN博客专家 | Java技术爱好者
在校期间积极参与实验室项目研发,现为CSDN特邀作者、掘金优质创作者。专注于Java开发、Spring
Boot框架、前后端分离技术及常见毕设项目实现。 📊 数据展示:
全网粉丝30W+,累计指导毕业设计1000+项目,原创技术文章200+篇,GitHub项目获赞5K+ 🎯 核心服务:
专业毕业设计指导、项目源码开发、技术答疑解惑,用学生视角理解学生需求,提供最贴心的技术帮助。
系统介绍:
开源免费分享【毕业设计】Django+Vue+PostgreSQL 协同过滤音乐推荐系统平台源码+数据库+论文+部署文档可提供说明文档 可以通过AIGC**技术包括:MySQL、VueJS、ElementUI、(Python或者Java或者.NET)等等功能如图所示。可以滴我获取详细的视频介绍
功能参考截图:
系统架构参考:
视频演示:
可以直接联系我查看详细视频,个性签名!
项目案例参考:
最后再唠叨一句:
可以直接联系我查看详细视频,个性签名!
遇见即是缘,欢迎交流,你别地能找到的源码我都有!!!