题解 P4290 [HAOI2008]玩具取名

这篇博客介绍了如何使用区间动态规划解决P4290[HAOI2008]玩具取名问题。作者在复习区间DP时遇到此题,并分享了详细思路和解决方案,包括状态转移方程和O(n^3 * 64)的时间复杂度分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题解- P 4290 [ H A O I 2008 ] P4290 [HAOI2008] P4290[HAOI2008]玩具取名

  • 在复习区间 D P DP DP的时候做到题目觉得挺好的就做了下,差点做不出来。

题目意思

l g   4290 lg\ 4290 lg 4290

S o l Sol Sol

这道题目我们先设两个数组 f i , j , k f_{i,j,k} fi,j,k表示 [ i , j ] [i,j] [i,j]能否用 W , I , N , G W,I,N,G W,I,N,G得到。再设 g i , j , k g_{i,j,k} gi,j,k表示 k k k是否能用 i , j i,j i,j得到(这在读入就可以预处理出来)。

那么 f i , j , k f_{i,j,k} fi,j,k怎么处理出来呢?

f i , j , k = 1 f_{i,j,k}=1 fi,j,k=1   ( f i , p , o = f p + 1 , j , p = 1 \ (f_{i,p,o}=f_{p+1,j,p}=1  (fi,p,o=fp+1,j,p=1   g o , p , k ) \ g_{o,p,k})  go,p,k)
f i , j , k = 1 f_{i,j,k}=1 fi,j,k=1   ( i = j , s i = k ) \ (i=j,s_i=k)  (i=j,si=k)

于是就 O ( n 3 × 64 ) O(n{^3} \times 64) O(n3×64) ,其中 64 64 64就是枚举 o , p , k o,p,k o,p,k即可。

C o d e Code Code

#include <bits/stdc++.h>
using namespace std;

inline int read()
{
	int sum=0,ff=1; char ch=getchar();
	while(!isdigit(ch))
	{
		if(ch=='-') ff=-1;
		ch=getchar();
	}
	while(isdigit(ch))
		sum=sum*10+(ch^48),ch=getchar();
	return sum*ff;
}

const int M=205;

int n,W,I,N,G,f[M][M][5],g[5][5][5];
char c[M];

inline int C(char c)
{
	if(c=='W') return 1;
	if(c=='I') return 2;
	if(c=='N') return 3;
	if(c=='G') return 4;
}

inline char S(int c)
{
	if(c==1) return 'W';
	if(c==2) return 'I';
	if(c==3) return 'N';
	if(c==4) return 'G';
}

int main()
{
	W=read();
	I=read();
	N=read();
	G=read();
	for ( int i=1;i<=W;i++ )
	{
		char ch[5];
		scanf("%s",ch+1);
		g[C(ch[1])][C(ch[2])][1]=1;
	}
	for ( int i=1;i<=I;i++ )
	{
		char ch[5];
		scanf("%s",ch+1);
		g[C(ch[1])][C(ch[2])][2]=1;
	}
	for ( int i=1;i<=N;i++ )
	{
		char ch[5];
		scanf("%s",ch+1);
		g[C(ch[1])][C(ch[2])][3]=1;
	}
	for ( int i=1;i<=G;i++ )
	{
		char ch[5];
		scanf("%s",ch+1);
		g[C(ch[1])][C(ch[2])][4]=1;
	}
	scanf("%s",c+1);
	n=strlen(c+1);
	for ( int i=1;i<=n;i++ ) f[i][i][C(c[i])]=1;
	for ( int l=2;l<=n;l++ ) 
		for ( int i=1;i+l-1<=n;i++ )
		{
			int j=i+l-1;
			for ( int k=i;k<j;k++ ) 
				for ( int o=1;o<=4;o++ ) 
					if(f[i][k][o])
						for ( int p=1;p<=4;p++ ) 
							if(f[k+1][j][p])
								for ( int q=1;q<=4;q++ ) 
									if(g[o][p][q]) 
										f[i][j][q]=1;
		}
	int ff=1;	
	for ( int i=1;i<=4;i++ ) 
		if(f[1][n][i]) 
		{
			putchar(S(i));
			ff=0;
		}
	if(!ff) return 0;
	printf("The name is wrong!\n");
	return 0;
}
			
		 
		
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值