大模型实操 | 手把手教你使用Coze智能体搭建资产管理小助手

1. 概述

   AI Agent: 简单来说就是一个能帮你做事的智能小助手。它就像一个拥有聪明大脑的软件程序,可以理解你的指令,并自动帮你完成各种任务。
   Coze是字节的一款低代码AI应用开发平台,无论你是否有编程基础,都可以在扣子上快速搭建基于大模型的各类智能体,并将智能体发布到各个社交平台、通讯软件或部署到网站等其他渠道。
   Coze官方平台:https://www.coze.cn/home

2. 创建Coze智能体

   主页点击“创建”按钮,点击 “创建智能体”下面的 “创建” 按钮,进入创建智能体信息页面。在这里我们给智能体起个名字,并在 “功能介绍” 中填写相关内容,然后点击 “确认” 进入编排页面。
在这里插入图片描述
   可以根据自己的需要点击右侧的加号来添加相应的功能。

   第一步:创建数据库
   使用Coze自带的数据库或者使用自带的知识库都可以
在这里插入图片描述

   第一步:添加工作流
在这里插入图片描述
 
在这里插入图片描述
   ■ 添加“意图识别”节点:
   意图识别作用:用于解析用户输入的意图,目标是将用户的输入分类,并根据分类结果执行相应的操作,从而实现自动化任务处理。
在这里插入图片描述
 
   具体配置如下:
在这里插入图片描述

   ■ 添加“大模型”节点:
在这里插入图片描述
 
   具体配置如下:
在这里插入图片描述

   ■ 添加“SQL自定义”节点
   当然这步也可以直接添加新增数据、删除数据、更新数据等SQL节点

在这里插入图片描述
   最后一定记得要将SQL语句转换成变量的形式:
   INSERT INTO demo_sql (ip, location, brand, number,sn) VALUES ('{{ip}}', '{{location}}', '{{brand}}', '{{number}}','{{sn}}')

   具体配置如下:
在这里插入图片描述

   ■ 添加“变量聚合”节点
   变量聚合作用:通过一个专门的节点,将多个分支的输出结果进行汇总,形成一个统一的输出。这一功能的主要目的是减少数据流的复杂性,避免因多路分支输出不一致而导致的处理困难。
在这里插入图片描述
 
   具体配置如下:
在这里插入图片描述
 
   结束节点配置如下:
在这里插入图片描述
 
   最后重新优化一下布局就可以发布了:
在这里插入图片描述

3. 发布Coze智能体

   点击右上角的发布按钮:
在这里插入图片描述
 
在这里插入图片描述

4. 配置API访问权限(待更新)

   待更新

5. Coze小程序端配置(待更新)

   待更新

### 如何 YOLOv8 分类模型 YOLOv8 是一种强大的目标检测框架,支持多种任务类型,包括分类、目标检测和分割。以下是基于 Ultralytics 库现 YOLOv8 分类模型的作方法。 #### 安装依赖库 首先需要安装 `ultralytics` 库,这是官方提供的 Python 软件包,用于简化 YOLO 的使用流程。 ```bash pip install ultralytics ``` #### 初始化模型 可以加载预训练的 YOLOv8 模型或通过 YAML 文件自定义构建一个新的模型。 ```python from ultralytics import YOLO # 方法一:加载预训练模型 (推荐) model = YOLO('yolov8n-cls.pt') # 加载分类专用的小型预训练模型 # 方法二:从配置文件创建新的模型并加载权重 model = YOLO('yolov8n-cls.yaml').load('weights/yolov8n-cls.pt') ``` 上述代码展示了两种初始化方式[^1]。对于分类任务,建议直接使用带有 `-cls` 后缀的预训练模型。 #### 数据准备 为了训练分类模型,需准备好数据集,并将其转换为适合 YOLO 格式的结构。通常情况下,数据集应包含以下内容: - 图像文件夹 (`images/`) - 对应标签文件夹 (`labels/`) 或 CSV 文件记录类别信息 假设已有一个名为 `custom_dataset.yaml` 的数据配置文件,其内容如下: ```yaml train: ./data/train/images/ val: ./data/validation/images/ names: 0: class_1 1: class_2 ... ``` #### 开始训练 调用 `.train()` 函数启动训练过程。可以通过参数调整超参设置。 ```python results = model.train( data='custom_dataset.yaml', # 数据集路径 epochs=100, # 总轮数 imgsz=640 # 输入图片尺寸 ) ``` 在此过程中,设备会自动选择 GPU(如果有),否则默认使用 CPU 进行计算。 #### 验证与预测 完成训练后,可验证模型性能并对新样本进行推理。 ```python # 验证模型效果 metrics = model.val() # 使用模型进行单张图片预测 predictions = model.predict(source='test_image.jpg') # 批量处理多张图片 batch_predictions = model.predict(source='./test_images/', save=True) ``` --- ### 封装后的图形化界面 如果希望进一步降低门槛,还可以参考某些社区资源开发的 GUI 工具[^3]。这些工具允许用户无需编写复杂脚本即可完成大部分工作流,只需上传数据集、指定模型路径并点击按钮运行即可。 不过需要注意的是,部分高级功能可能涉及收费服务,在此前提下鼓励开发者自行学习基础命令行接口以便灵活定制需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

降世神童

学都学了,看也看了,感谢打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值