fMRI激活网络分析与体积数据分类方法研究
1. fMRI激活网络分析
在对fMRI激活网络进行分析时,研究人员将研究对象分为了阿尔茨海默病(AD)、晚期轻度认知障碍(LMCI)、早期轻度认知障碍(EMCI)和正常(Normal)四组。其中,LMCI患者受影响更严重,接近完全的阿尔茨海默病状态,而EMCI患者则更接近健康对照组。具体人数分布为:AD组30人,LMCI组34人,EMCI组47人,正常组38人。
1.1 实验结果
为了研究fMRI激活网络的结构差异,以区分不同组别的患者,研究人员进行了一系列实验。具体操作步骤如下:
1. 计算核矩阵 :使用玻色 - 爱因斯坦熵计算Jensen - Shannon核矩阵,并将其性能与从冯·诺伊曼熵得到的结果进行比较。根据图的谱和粒子总数,通过特定公式(式(11))推导出化学势,进而计算熵。
2. 特征空间映射 :运用核主成分分析(kPCA)将图映射到三维特征空间,使用前三个特征向量展示每组的聚类情况。结果表明,玻色 - 爱因斯坦熵和冯·诺伊曼熵都能将四组对象分开,但玻色 - 爱因斯坦统计下的聚类效果更好。
3. 分类准确性计算 :为了更定量地分析,研究人员应用Fisher线性判别分析对具有核特征的图进行分类,并计算分类准确性。由于数据集的采样数量较少,采用留一法交叉验证,并将所有图作为测试数据。
分类准确性 | 阿尔茨海默病 | LMCI | E |
---|