基于变分推理的自适应稀疏贝叶斯回归
在回归分析中,传统方法在处理复杂数据和异常值时存在一定的局限性。为了应对这些问题,研究人员提出了一种基于变分推理的自适应稀疏贝叶斯回归方法,旨在实现更准确、稳健的回归分析。
1. 相关向量机(RVM)基础
- 模型设定 :假设给定训练数据 $(x_n, t_n) \in R^d \times R$,其中 $x_n$ 是解释变量,$t_n$ 是标量输出。在普通 RVM 中,$t_n$ 的条件分布假定为 $p(t_n|x_n, \sigma^2) = N(t_n|y(x_n), \sigma^2)$,其中 $\sigma^2 \in R^+$。均值 $y(x_n)$ 采用线性组合形式:$y(x_n) = \sum_{i=1}^{N} w_iK(x_n, x_i) + w_0 = \varphi(x_n)^T w$,这里 $\varphi(x_n) = (1, K(x_n, x_1), \ldots, K(x_n, x_N))^T$,$K(x_n, x_i) = \exp(-\gamma |x_n - x_i|^2)$,$\gamma \in R^+$,使用的是高斯核。
- 权重先验分布 :权重 $w$ 的先验分布采用自动相关性确定(ARD)先验:$p(w|\alpha) = \prod_{i=0}^{N} N(w_i|0, \alpha_i^{-1}) = N(w|0, A^{-1})$,其中 $\alpha = (\alpha_0, \ldots, \alpha_N)^T \in R^{N+1}_+$,$A = diag(\alpha)$,每个 $\alpha_