平均混合矩阵签名:图匹配的新方法
1. 引言
在计算机视觉领域,基于图的表示方法在物体形状抽象和场景结构识别方面取得了显著成效。图匹配问题是基于图的模式识别中的一个基本问题,其目标是找到两个图的顶点之间的对应关系,同时保持边的结构。为了提高图匹配算法的性能,许多算法会使用局部结构描述符,将图的节点嵌入到向量空间中。其中,热核签名(HKS)和波核签名(WKS)是两种特别成功的结构签名,它们都属于基于拉普拉斯算子的谱描述符,分别基于热扩散过程和波函数传播来表征图的结构。
本文提出了一种基于连续时间量子行走的新型结构签名——平均混合矩阵签名(AMMS)。量子行走在表征图结构方面已被证明非常有效,而使用平均混合矩阵可以克服量子行走缺乏收敛性的问题。实验表明,AMMS在图匹配任务中对结构噪声具有鲁棒性,并且优于现有的HKS和WKS。
2. 量子行走与平均混合矩阵
2.1 连续时间量子行走
连续时间量子行走是连续时间随机行走的量子模拟。对于一个无向图 $G = (V, E)$,其中 $V$ 是顶点集,$E$ 是边集。在连续时间随机行走中,状态向量 $p(t)$ 根据热方程 $p(t) = e^{-Lt}p(0)$ 演化,其中 $L$ 是图的拉普拉斯矩阵。
而连续时间量子行走的状态空间是图的顶点集,经典状态向量被一个复振幅向量所取代,其平方范数之和为1。行走的状态 $|\psi(t)\rangle$ 是基态 $|u\rangle$ 的复线性组合:
[|\psi(t)\rangle = \sum_{u\in V} \alpha_u(t)|u\rangle]
其中,$\alpha_u(t)$ 是复振幅,$\al