58、图编辑距离还是图编辑伪距离?

图编辑距离还是图编辑伪距离?

1. 引言

在模式识别领域,属性图已发挥了四十多年的关键作用,它被用于对各类问题进行建模。若通过属性图对模式识别中的元素进行建模,就需要容错图匹配算法,其目标是计算两个属性图节点间的匹配,从而最小化某种目标函数。图编辑距离便是评估纠错图同构时广泛使用的方法之一。

图编辑距离需要两个主要输入参数,即待比较的一对属性图以及其他校准参数。为了在分类场景中最大化识别率,或者最小化两个图节点间的真实对应与所得对应之间的汉明距离,这些参数需要进行调整。

然而,目前很少有研究分析图编辑距离究竟是一种距离,还是仅仅是一种可归类为伪距离的相异函数,因为它并未满足某些距离限制条件。图编辑距离是否为真正的距离,对一些应用会产生影响。例如,在图检索技术中,若图编辑距离不是距离,三角形不等式就无法保证,这会导致一些本应探索的图未被考虑,使方法达不到最优。

本文旨在实证分析当识别率最大化或所得对应接近真实情况时,图编辑距离是否满足距离的定义。

2. 图与图编辑距离

设 (D_v) 和 (D_e) 分别表示属性顶点和弧的可能取值域。属性图(基于 (D_v) 和 (D_e))由元组 (G = (R_m, R_e, c_v, c_e)) 定义,其中 (R_v = {v_k | k = 1, \ldots, R}) 是顶点(或节点)集,(R_e = {e_{ij} | i, j \in {1, \ldots, R}}) 是边(或弧)集,(c_v: R_v \to D_v) 为顶点分配属性值,(c_e: R_e \to D_e) 为边分配属性值。

设 (G_p = (R_p^v, R_p^e, c_p^v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值