图编辑距离与手写单词图像分类方法研究
在当今的计算机科学领域,图编辑距离和手写单词图像分类是两个重要的研究方向。图编辑距离用于比较两个图并获取距离和图对应关系,而手写单词图像分类则致力于从手写单词图像中提取有意义的信息。下面我们将详细探讨这两个方面的研究内容。
图编辑距离相关研究
图编辑距离是目前广泛用于比较两个图的函数,它不仅依赖于一对图,还与节点和边的插入和删除编辑成本的定义有关。这些成本通常被定义为常数,根据其定义,图编辑距离是否为真正的距离也有所不同。
分类比率与汉明距离
在实验中,我们计算了分类比率,使用了每个数据库的参考集和测试集以及1 - 最近邻分类算法。从表4可以看出分类比率的情况:
| 数据集 | Q1 | Q2 | Q3 | Mean | ½ Max |
| ---- | ---- | ---- | ---- | ---- | ---- |
| Letter low | 0.97 | 0.97 | 0.97 | 0.97 | 0.93 |
| Letter high | 0.74 | 0.82 | 0.83 | 0.82 | 0.74 |
| House Hotel | - | - | - | - | - |
| Rotation Zoom | 0.2 | 0.2 | 0.35 | 0.3 | 0.1 |
分类比率的表现与汉明距离相似。当插入和删除编辑成本小于1/2 Max时,能获得最佳值。之前的研究探讨了识别比率与真实对应和获得的对应之间汉明距离的关系,实验证明降低汉明距离会使识别比率增加。同时,研究中的优化方法收敛到一些负的插入和删除成本,这使得图编辑距