历史手写文档中基于图的关键词检索
在数字化时代,手写文档的数字资源正迅速增长。然而,这些文档在搜索和浏览方面的可访问性却存在不足。本文将介绍一种用于历史手写文档关键词检索(KWS)的新方法,该方法基于关键点的图表示,能有效提升检索效果。
1. 关键词检索概述
关键词检索(KWS)旨在从语音记录或文本图像中检索给定查询词的所有实例。它可大致分为在线和离线 KWS:
- 在线 KWS :借助电子输入设备(如数字笔或平板电脑)记录手写的时间信息。
- 离线 KWS :仅基于扫描图像,因此难度更大。本文聚焦于历史手写文档的 KWS,即离线 KWS。
现有的 KWS 方法主要分为基于模板和基于学习的匹配算法:
- 基于模板的 KWS :早期方法基于单词图像的逐像素匹配,更复杂的则基于动态时间规整(DTW)匹配特征向量,还有通过匹配局部二值模式(LBP)直方图的方法。其优点是独立于文档的实际表示形式和语言,但对不同书写风格的泛化能力较差。
- 基于学习的 KWS :基于统计模型,如隐马尔可夫模型(HMM)、神经网络(NN)或支持向量机(SVM)。这些模型需要在大量训练单词上进行预训练,具有较高的泛化能力,但由于需要在特定训练集上学习模型参数,灵活性有所损失。
目前,大多数 KWS 算法基于单词图像的统计表示,而基于图的 KWS 方法相对较少。但图表示对于 KWS 具有独特优势,因为与特征向量相比,图能更自然、全面地表示单词图像。