wasm7browser
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
63、历史手写文档中的关键词定位技术:基于图和局部二值模式的方法
本文提出了一种基于局部二值模式(LBP)和四叉树空间采样的端到端关键词定位方法,用于提高历史手写文档图像中的信息检索性能。该方法无需分割和标注数据,通过LBP提取纹理特征,并结合四叉树空间采样融入空间信息,最终使用最近邻匹配实现高效关键词定位。实验结果表明,该方法在无学习范式下取得了优于现有技术的性能,具有计算高效和适用于大规模历史文档的优势。原创 2025-08-30 04:15:44 · 19 阅读 · 0 评论 -
62、历史手写文档中基于图的关键词检索
本文提出了一种基于图的关键词检索(KWS)方法,用于提高历史手写文档的检索效果。该方法利用关键点提取图表示,并结合图编辑距离(GED)进行成对匹配,通过图归一化和优化成本函数提升检索性能。实验结果表明,该方法优于传统的基于动态时间规整(DTW)的检索系统,在乔治·华盛顿数据集上取得了更高的平均平均精度(mAP)。这种基于图的KWS方法为历史手写文档的数字化处理提供了更有效的解决方案。原创 2025-08-29 14:28:50 · 24 阅读 · 0 评论 -
60、手写文字图像分类与图数据库研究
本文研究了手写文字图像分类与图数据库的应用。针对手写文字图像大小不一的问题,采用了空间金字塔池化(SPP)策略,有效提高了卷积神经网络的适应性和分类性能,在Esposalles数据集上取得了78.11%的分类准确率。同时,文章还探索了六种不同的图表示方法用于手写文字图像的建模,包括基于关键点、网格最近邻、网格最小生成树、网格Delaunay三角剖分、投影和分割的图提取方法,并通过基于距离的分类实验进行了评估。研究旨在为手写识别提供更有效的特征表示与分类方法,未来可结合多图表示策略及上下文信息进一步提升性能。原创 2025-08-27 12:52:55 · 19 阅读 · 0 评论 -
59、图编辑距离与手写单词图像分类方法研究
本文探讨了图编辑距离和手写单词图像分类方法的研究进展与应用。在图编辑距离部分,分析了分类比率与汉明距离的关系、运行时间的表现以及其作为距离度量的理论缺陷。对于手写单词图像分类,提出了一种基于卷积神经网络和空间金字塔池化层的新方法,能够有效检测和分类手写实体,尤其在处理未见过的单词(OOV)方面表现出色。文章还对两种方法进行了综合比较,并展望了它们在图数据库管理、历史文档信息提取等领域的应用前景。原创 2025-08-26 12:33:22 · 19 阅读 · 0 评论 -
58、图编辑距离还是图编辑伪距离?
本文探讨了图编辑距离是否满足距离的定义,通过理论分析和实验验证发现,图编辑距离在多数情况下不满足三角形不等式,因此更适合作为伪距离使用。研究结果对图检索、模式识别等应用具有重要意义,提示在实际应用中需要谨慎选择成本参数并改进算法。原创 2025-08-25 14:47:54 · 37 阅读 · 0 评论 -
57、用于学习容错图匹配的图仓库介绍
本文介绍了一个公开可用的图仓库,用于对图算法(如图匹配、图聚类、学习共识对应或参数学习)进行基准测试。该仓库包含多个数据库,每个数据库由一对图、它们的类和真实对应关系组成,支持测试算法的性能。仓库中的数据库具有不同的特征,包括节点和边的数量、类别数、属性类型以及真实对应关系映射到空节点的节点数,能够帮助分析不同情况下的算法表现。此外,文章还展示了在这些数据库上使用快速二分图匹配(FBP)计算图编辑距离(GED)的结果,并邀请其他研究人员分享更多成果,以扩展和传播目前已取得的进展。原创 2025-08-24 12:24:51 · 17 阅读 · 0 评论 -
56、用于广义中位数计算和图匹配的方法与数据库
本文介绍了使用进化方法计算广义中位数(GM)对应关系的原理与步骤,并探讨了其在图匹配领域的应用。进化方法基于加权均值概念,通过迭代优化逼近广义中位数,适用于任意距离类型且具备良好可扩展性。同时,提出了一种新型图数据库结构,支持更全面的质量度量,为图匹配算法研究提供丰富信息。实验表明,进化方法在多数情况下能获得接近最优的广义中位数,且具备良好的收敛性。文章还分析了不同应用场景下的方法选择策略,并展望了未来研究方向,如距离度量拓展、算法优化与数据库完善。原创 2025-08-23 13:41:02 · 19 阅读 · 0 评论 -
55、基于GNCCP近似图编辑距离及对应广义中位数计算
本文探讨了基于GNCCP的图编辑距离(GED)近似计算方法及其在广义中位数(GM)对应关系中的应用。通过将GED建模为二次分配问题,并采用渐进非凸性和凹性过程(GNCCP)松弛策略,与传统的整数投影定点法(IPFP)相比,GNCCP无需初始映射且直接收敛至映射矩阵,在化学数据集实验中展现出更高的准确性。同时,本文比较了计算广义中位数的最小化方法和迭代方法:最小化方法基于线性分配问题,能精确求解但受限于汉明距离;迭代方法适用于各种距离函数,但仅能提供次优解。最终提供了决策流程以指导在不同场景下选择合适的方法,原创 2025-08-22 10:38:57 · 15 阅读 · 0 评论 -
54、图编辑距离计算方法解析与比较
本文详细解析了多种图编辑距离(GED)的计算方法,并对它们的性能进行了分析。重点介绍了基于二进制线性规划的精确计算方法、将GED近似为二次分配问题的方法以及基于GNCCP的近似方法。通过实验对比发现,不同方法适用于不同类型和规模的图,研究者可根据具体需求选择合适的方法。此外,文章还提供了方法选择的流程图,便于快速决策。原创 2025-08-21 12:05:58 · 19 阅读 · 0 评论 -
53、图匹配与编辑距离计算的创新方法探索
本文探讨了图处理与模式识别领域的两种创新方法:基于平均混合矩阵签名(AMMS)的图匹配方法和使用二进制线性规划(BLP)精确计算图编辑距离的方法。AMMS方法通过连续时间量子行走探测图结构,在多个数据集上表现出优于传统签名(如HKS和WKS)的性能;BLP方法则解决了现有技术无法处理边属性图的局限,能够在较大且复杂的数据集上精确计算图编辑距离。文章还分析了两种方法在图像识别、社交网络分析、生物信息学和文档分析等实际场景中的应用潜力。原创 2025-08-20 15:35:05 · 24 阅读 · 0 评论 -
52、平均混合矩阵签名:图匹配的新方法
本文提出了一种基于连续时间量子行走的新型结构签名方法——平均混合矩阵签名(AMMS),用于解决图匹配问题。与现有的热核签名(HKS)和波核签名(WKS)相比,AMMS 对结构噪声具有更强的鲁棒性,并在 CMU 房屋序列数据集和合成数据集上验证了其优越性能。实验结果表明,AMMS 在图匹配任务中表现优异,具有较低的参数敏感性和较高的匹配准确率。原创 2025-08-19 10:34:16 · 22 阅读 · 0 评论 -
51、用于蛋白质远程同源性检测的富集词袋模型
本文介绍了一种用于蛋白质远程同源性检测的富集词袋模型(EBoW),通过将进化信息注入传统的词袋(BoW)表示,显著提升了分类的准确性和生物学相关性。EBoW 利用替换矩阵(如BLOSUM矩阵)计算富集向量,从而在计数过程中考虑氨基酸替换的可能性,解决了传统BoW模型无法编码单词之间进化关系的问题。实验表明,EBoW在SCOP 1.53基准数据集上表现优异,尤其是在2-元组和3-元组的表示中,ROC和ROC50评分均有显著提升。文章还探讨了模型的技术优势、不同N-元组的表现、BLOSUM矩阵的影响,并与其他方原创 2025-08-18 09:10:31 · 18 阅读 · 0 评论 -
50、GPS轨迹生物识别与蛋白质远程同源性检测技术解析
本文深入解析了GPS轨迹生物识别和蛋白质远程同源性检测两大技术领域。在GPS轨迹生物识别部分,探讨了基于DFT特征提取与高斯混合模型(GMM)分类器的用户身份识别方法,并分析了不同数据集对识别准确率的影响。在蛋白质远程同源性检测方面,介绍了经典Bag of Words方法及其改进方案,通过引入突变概率提升检测的准确性,并展望了未来的研究方向和技术融合的可能性。原创 2025-08-17 12:51:55 · 16 阅读 · 0 评论 -
49、手势输入与GPS轨迹生物识别技术解析
本文深入解析了手势输入与GPS轨迹生物识别技术,涵盖了基于Random Swap算法的阈值聚类、Mopsi2014数据集的搜索效率分析、手势搜索的可用性评估等内容。同时,文章还介绍了从GPS轨迹中提取短期动态特征并用于用户识别的研究,包括基于GMM-UBM分类器的统计用户表征模型及其实验结果。研究表明,手势输入在路线搜索中具有高效性,而GPS轨迹数据在生物识别方面具有一定的应用潜力。未来的研究方向包括优化特征提取算法、改进模型结构以及考虑更多环境因素对识别的影响。原创 2025-08-16 09:50:44 · 17 阅读 · 0 评论 -
48、无监督可解释模式发现与手势输入GPS路线搜索
本博文探讨了两个前沿技术方向:无监督可解释模式发现与手势输入GPS路线搜索。前者利用卷积自动编码器,结合非局部最大抑制层和AdaReLU函数,有效挖掘时间序列中的真实、可解释模式,并已在交通和能源领域展现出应用潜力。后者提出了一种基于手势和模式匹配的实时路线搜索方法,通过网格单元格表示和形态学膨胀操作,实现了高效、直观的空间路线检索。两者结合为数据挖掘、智能交通和人机交互提供了创新解决方案,并展望了其未来在多领域的拓展可能。原创 2025-08-15 12:52:33 · 20 阅读 · 0 评论 -
47、利用自编码器在时间序列中进行无监督可解释模式发现
本文提出了一种利用卷积自编码器在时间序列中进行无监督可解释模式发现的方法。通过引入自适应修正线性单元(AdaReLU)、组套索正则化等元素,提高了模式的可解释性,并能够自动发现数据中“真实”的模式数量。在合成数据集和真实视频数据集上的实验结果表明,该方法能够有效地挖掘时间序列中的隐藏模式,具有良好的性能和鲁棒性。研究还探讨了该方法在扩展网络结构和应用场景中的未来发展方向。原创 2025-08-14 16:57:41 · 12 阅读 · 0 评论 -
46、利用厚度轮廓检测细长形状中的椭圆
本文介绍了一种通过跟踪对称轴上的厚度变化来检测细长形状中椭圆的方法,称为TED和改进的S-TED算法。该方法利用骨架化、形状扁平化、厚度轮廓计算和椭圆参数估计等步骤,能够有效处理单个椭圆、多个椭圆组合以及具有平滑过渡的椭圆形状。相比其他方法,该算法具有较低的复杂度(O(n)),并具备良好的噪声适应性和形状描述能力。实验结果表明,TED和S-TED在合成图像和实际生物图像数据集中均表现出较高的精度和召回率,适用于生物对象分析、工业检测和图像识别等多个领域。原创 2025-08-13 11:59:38 · 19 阅读 · 0 评论 -
45、实体提取、校正与椭圆检测方法解析
本文探讨了实体提取与校正以及椭圆检测的方法。在实体提取方面,提出了基于相关令牌聚类和非连续结构分析的技术,并结合正则表达式和几何关系进行校正,有效提升了发票数据中实体提取的精度。在椭圆检测方面,介绍了基于厚度轮廓的TED算法,能够准确检测细长形状中的椭圆部分,具有良好的抗噪能力和综合性能。实验结果表明,所提方法在实际应用中表现优异,具备广泛的应用前景。原创 2025-08-12 11:36:27 · 16 阅读 · 0 评论 -
44、形状归一化与跳舞蠕虫跟踪及实体提取校正
本文介绍了蠕虫跟踪和实体提取校正两种方法。蠕虫跟踪通过引入归一化形状特征和轨迹分析,有效解决遮挡问题并维持身份识别,适用于杜氏阔沙蚕等生物研究。实体提取与校正方法基于OCR和上下文搜索,能够处理发票中的连续和非连续结构,提高了提取准确性。两种方法在生态、生物医学和工业监测等领域具有广泛应用前景。原创 2025-08-11 16:45:52 · 20 阅读 · 0 评论 -
43、马尔可夫 - 吉布斯纹理建模与海洋蠕虫跟踪技术
本文探讨了马尔可夫-吉布斯纹理建模与海洋蠕虫跟踪技术的研究与应用。在纹理建模部分,介绍了基于FRAME和FoE方法的模型结构学习与特征参数优化,强调了滤波器预训练的重要性,并对比了不同滤波器类型的优劣。在海洋蠕虫跟踪部分,提出了一种结合形状归一化、卡尔曼滤波器跟踪和特征比较重新识别的2D跟踪方法,有效解决了蠕虫遮挡后的身份识别与轨迹连续性问题。文章还展望了未来在多模态特征融合、实时性优化和复杂场景适应方面的改进方向。原创 2025-08-10 12:47:41 · 21 阅读 · 0 评论 -
42、基于学习的自由形式滤波器的马尔可夫 - 吉布斯纹理建模
本文提出了一种基于学习的自由形式滤波器的马尔可夫-吉布斯纹理建模方法。通过模型嵌套和极小极大熵原理,结合非连续滤波器和直方图非参数建模,该方法能够高效捕捉大规模纹理的视觉特征,同时兼顾细节和结构。文章还介绍了滤波器预训练和优化策略,以及与现有模型(如FoE、FRAME)的比较。实验结果表明,该方法在Brodatz、VisTex和Simoncelli等多个纹理数据集上均表现出优越的合成效果。原创 2025-08-09 09:32:55 · 15 阅读 · 0 评论 -
41、信息论旋转鲁棒二进制描述符学习
本文介绍了一种基于信息论的旋转鲁棒二进制图像描述符构建方法,旨在实现实时应用中的高效和鲁棒图像匹配。通过结合离线测试选择和在线描述符计算机制,该方法在性能和紧凑性方面表现出色,尤其在中等角度旋转条件下优于现有方法如 BOLD 和 SIFT。实验表明,该描述符在多个数据集和不同变换条件下均具有良好的匹配性能,适合移动设备上的实时图像处理任务。原创 2025-08-08 10:11:35 · 17 阅读 · 0 评论 -
40、手写文档鉴定与二进制描述符学习的前沿技术
本文探讨了手写文档作者身份鉴定和一种新的数据驱动的二进制描述符选择方法。手写文档鉴定利用纹理描述符(如分形维度和基于GLCM的熵)提取笔迹特征,并通过支持向量机分类实现作者身份识别。二进制描述符学习则提出了一种高效的描述符选择方法,在实时应用中表现出色。两种技术在司法鉴定、历史文献研究、实时监控及视觉导航等领域具有广泛应用前景。未来研究可结合深度学习与多模态描述符,进一步提升性能与适应性。原创 2025-08-07 14:03:59 · 19 阅读 · 0 评论 -
39、基于平均精度损失的序列标注结构支持向量机及手写文档作者鉴定方法
本文提出了一种基于平均精度损失的序列标注结构支持向量机方法,用于人类活动识别任务,并在TUM Kitchen和CMU Multimodal Activity数据集上验证了其性能,结果表明该方法显著提高了平均精度。同时,文章还介绍了一种基于上下文无关方法的手写文档作者鉴定技术,通过采用Hanuziak分割方法和纹理描述符(GLCM和分形模型)结合SVM分类器,实现了高准确率的作者身份鉴定。两种方法分别在序列标注和手写文档鉴定领域展现出卓越的性能,并为未来研究提供了新的思路。原创 2025-08-06 13:01:11 · 14 阅读 · 0 评论 -
38、多任务多领域学习的语义分割与序列标注研究
本博客主要探讨多任务多领域学习在语义分割和序列标注任务中的应用与研究进展。在语义分割方面,通过联合训练结合梯度反转和数据集平衡策略,有效提升模型在多个数据集上的分割性能。针对序列标注任务,提出了一种基于平均精度损失的结构SVM算法,显著提高了平均精度表现。研究展示了多任务多领域学习在复杂视觉任务中的潜力,并对未来优化方向进行了展望。原创 2025-08-05 12:29:13 · 20 阅读 · 0 评论 -
37、线性分类器的安全性、稀疏性与语义分割多任务多域学习
本博文探讨了线性分类器在对抗环境中的安全性与稀疏性问题,以及语义分割中的多任务多域学习方法。针对不同类型的攻击,分析了各类线性分类器的表现,并提出了适合不同场景的正则化器选择策略。在语义分割部分,提出了一种能够处理不同标签空间和输入域偏移的联合训练方法,并通过实验验证了其有效性。研究为提升分类器安全性、稀疏性以及语义分割模型的泛化能力提供了新的思路。原创 2025-08-04 13:09:32 · 13 阅读 · 0 评论 -
36、对抗环境下线性分类器的安全性与稀疏性
本文探讨了对抗环境下线性分类器的安全性与稀疏性问题,分析了攻击者模型及其对分类器的影响,并研究了正则化方法如何提升分类器的安全性和稀疏性。提出了一种新颖的八角形正则化器以在安全性和稀疏性之间取得平衡。通过MNIST手写数字、垃圾邮件过滤和PDF恶意软件检测等多个实验验证了不同正则化器在对抗攻击下的性能,表明选择合适的正则化器对于对抗环境中的机器学习应用至关重要。原创 2025-08-03 15:06:10 · 15 阅读 · 0 评论 -
35、步态识别与线性分类器安全研究
本博客探讨了步态识别与线性分类器在对抗环境下的安全性和稀疏性研究。步态识别部分介绍了基于LearnTransformationMatrixMMC(GL)算法的特征提取方法,并结合CMU MoCap数据库的实验验证了其高效性和有效性。线性分类器研究则聚焦于其在安全相关领域的应用挑战,提出了一种新的八角形正则化器,以平衡安全性与特征权重稀疏性。实验表明,该正则化器能有效增强分类器对抗攻击的能力,同时降低处理成本。博客还对两种技术的未来发展方向进行了展望,包括优化准则的探索、深度学习的结合以及多模态数据融合的应用原创 2025-08-02 15:42:29 · 20 阅读 · 0 评论 -
34、半监督学习中的峰值现象与步态识别的独立特征研究
本文探讨了半监督学习中的峰值现象及其对分类器性能的影响,并研究了如何从运动捕捉数据中提取行走者独立的步态特征。在半监督学习部分,重点分析了半监督最小二乘分类器的特性,揭示了未标记数据对学习曲线的影响机制,并通过基准数据集验证了相关结论。在步态识别部分,提出了一种基于最大边际准则(MMC)的特征提取方法,能够从原始关节坐标中学习具有高区分性的低维步态特征。最后,通过对比分析两种方法的特点、应用场景和挑战,展望了它们的未来发展趋势。原创 2025-08-01 11:54:10 · 20 阅读 · 0 评论 -
33、聚类中质心指数与半监督学习的峰值现象研究
本文研究了聚类分析中的质心指数(CI)以及半监督学习中的峰值现象。在聚类分析部分,探讨了不同聚类方法(如高斯混合模型和任意形状聚类)的CI计算方式及其有效性,并比较了原型相似度、划分相似度和模型相似度方法的应用。在半监督学习部分,分析了峰值现象的产生原因及其对分类性能的影响,通过调整学习曲线近似公式、模拟研究和基准数据集验证,深入探讨了半监督学习中错误率的变化趋势。最后,总结了研究发现,并展望了未来的研究方向,包括提高CI计算效率和减轻半监督学习中峰值现象影响的策略。原创 2025-07-31 11:02:59 · 16 阅读 · 0 评论 -
31、基于概率双聚类的多结构恢复
本文探讨了基于概率双聚类的多结构恢复(MSR)方法,重点介绍了双聚类技术在处理噪声数据和复杂结构中的优势。通过与传统聚类方法的对比,展示了双聚类如何利用局部信息隔离数据中的复杂模式,并采用FABIA算法进行实验验证。使用Adelaide基准数据集,在运动分割和平面分割任务中评估了FABIA的性能,结果表明其优于现有方法。原创 2025-07-29 09:31:15 · 21 阅读 · 0 评论 -
30、基于变分推理的自适应稀疏贝叶斯回归
本文介绍了一种基于变分推理的自适应稀疏贝叶斯回归方法,通过结合异方差假设和变分推理技术,实现了更准确、稳健的回归分析。该方法在模型训练过程中能够自适应调整核参数,结合先验信息避免过拟合,并有效减少异常值的影响。通过人工数据和真实数据实验验证,该方法在均方误差(MSE)和模型稀疏性方面均优于传统方法(如ARVM和RRVM),展现出良好的应用前景。原创 2025-07-28 15:16:53 · 20 阅读 · 0 评论 -
29、高维数据的离群点鲁棒测地线 K - 均值算法与自适应稀疏贝叶斯回归
本文介绍了两种处理高维数据的先进算法:离群点鲁棒测地线K-均值(ORGK-means)算法和自适应稀疏贝叶斯回归方法。ORGK-means通过改进距离度量、引入测地线局部离群因子(gLOF)以及加权变换模型,有效解决了传统方法在高维数据中聚类不准确和对离群点敏感的问题。自适应稀疏贝叶斯回归则基于变分推理理论改进了相关性向量机(RVM)的核参数选择,提升了回归模型的准确性与适应性。文章通过实验验证了两种方法在合成数据和真实数据中的优越性能,并探讨了它们在遥感数据处理、生物信息学和金融风险评估等领域的应用前景。原创 2025-07-27 09:17:31 · 21 阅读 · 0 评论 -
28、图致密化与高维数据离群点鲁棒测地线K-means算法
本文介绍了图致密化中的谱相似性和优化问题,以及一种针对高维数据的离群点鲁棒测地线K-means算法(ORGK-means)。通过引入谱相似性的概念和构建优化模型,为图致密化提供了理论支持和求解流程。同时,ORGK-means算法结合共享最近邻(SNN)距离度量、基于测地线距离的局部离群因子(LOF)以及双Sigmoid函数集成离群得分,提升了传统K-means算法在处理非球形簇、离群点和高维数据方面的性能。实验结果表明,ORGK-means在总体聚类准确率和平均精度方面优于经典K-means和DGK-mea原创 2025-07-26 09:08:53 · 13 阅读 · 0 评论 -
27、多方式数据分析在体积数据分类及图致密化中的应用
本博文探讨了多方式数据分析在体积数据分类及图致密化中的应用。在体积数据分类部分,介绍了基于3D离散余弦变换(3D-DCT)的降维方法和张量子空间分类方法,并通过人体肝脏CT图像的实验验证了其有效性。在图致密化部分,提出了通过割相似性和优化问题将稀疏图转换为致密化图的方法,从而改善通勤时间估计的准确性。通过实验验证了该方法在不同数据集上的有效性,并讨论了其在机器学习任务中的潜在应用。原创 2025-07-25 12:37:13 · 13 阅读 · 0 评论 -
26、fMRI激活网络分析与体积数据分类方法研究
本博文主要研究了基于fMRI激活网络分析和体积数据分类的两种方法。fMRI分析中,采用玻色-爱因斯坦熵结合Jensen-Shannon散度和核主成分分析,能够更准确地区分阿尔茨海默病、晚期和早期轻度认知障碍以及正常组别,并在分类准确性上优于冯·诺伊曼熵。体积数据分类方面,通过多向数据分析和张量方法,可直接从医学数据中提取压缩轮廓形状并进行高效分类。研究为医学和生物学领域的疾病早期诊断、药物研发、医学影像分析及生物形态研究提供了新的方法支持,同时也探讨了方法在大数据分析、参数优化及多模态数据融合方面的未来发展原创 2025-07-24 16:37:23 · 17 阅读 · 0 评论 -
25、fMRI激活网络分析:使用玻色 - 爱因斯坦熵
本文介绍了一种基于玻色-爱因斯坦熵的新型图分类方法,通过结合统计力学与核方法,利用网络熵定义信息论核,实现了对fMRI激活网络的有效分类。文章首先将图表示为量子系统,定义了密度矩阵、哈密顿算子和冯·诺伊曼熵,随后运用量子统计和玻色-爱因斯坦统计计算网络的热力学特征和熵。在此基础上构建詹森-香农核,并应用核主成分分析(kPCA)将图嵌入低维特征空间进行分类。实验结果表明,该方法在fMRI激活网络分类问题上优于一些常见的图分类方法,具有一定的性能优势。原创 2025-07-23 16:35:31 · 17 阅读 · 0 评论 -
24、XNN图:一种创新的邻域图结构
本文介绍了一种创新的邻域图结构——XNN图,旨在解决传统KNN图和ɛ-邻域图在参数选择和图连通性方面的不足。XNN图通过可变邻域大小自动适应数据的局部密度,同时保证图的连通性,能够在路径聚类、旅行商问题和KNN分类器等任务中取得良好效果。文章详细探讨了XNN图的构建方法、不同变体的特点以及在实际场景中的应用建议,并展望了其未来的研究方向。原创 2025-07-22 14:07:30 · 22 阅读 · 0 评论 -
23、有向图的Jensen - Shannon散度核方法研究
本文介绍了一种基于Jensen-Shannon散度的有向图核方法,用于比较有向图的结构。通过引入有向图的von Neumann熵及其近似计算方法,构建了Jensen-Shannon扩散核,该方法在图分类和金融数据分析中表现出良好的效果。实验表明,该方法能够有效区分不同模型生成的有向图,并在金融危机期间的股票市场网络分析中揭示了网络结构的显著变化。此外,该方法具有较低的计算复杂度,避免了图大小偏差,并具备正定性质,适用于大规模图数据处理。未来可拓展至生物网络、社交网络和交通网络分析等领域。原创 2025-07-21 11:45:48 · 13 阅读 · 0 评论 -
22、图处理新方法:狄利克雷图致密化器与詹森 - 香农散度核
本文介绍了两种图处理领域的新方法:狄利克雷图致密化器和詹森 - 香农散度核。狄利克雷图致密化器通过线图构建和调和函数推断,将原始图转换为更致密的版本,以提升通勤距离估计的准确性,并在实验中表现出对类间噪声的有效控制;詹森 - 香农散度核则基于信息论,提供了一种衡量有向图结构相似性的新途径,适用于分类和分析复杂有向网络。文章还深入分析了狄利克雷图致密化器与锚图、标准加权kNN图的性能差异,并探讨了该方法在不同参数设置下的适用性。最后,文章展望了这两种方法的未来研究方向,包括提高致密化效果、扩展应用领域以及优化原创 2025-07-20 15:17:06 · 20 阅读 · 0 评论