引子:
前缀和应用广泛,尤其是在区间求和上的应用,是OIer的必备知识,我想让大家通过这篇博客初识前缀和的厉害
一维前缀和:
对于一个给定的数列A,它的前缀和就是能通过递推来求出的信息之一,公式如下
那么有人要问了,前缀和有什么用呢?
我们先看一个问题:
给定一个数列A,让你求区间[l,r]上所有数字的和
(第一行输入三个整数N,l,r,一下N行为数列中的数,输出区间[l,r]上的所有数字和)
1.传统的做法是是把区间上的每一个数都加起来
Res = A[l]+A[l+1]+....+A[r-1]+A[r]
代码如下:
#include<iostream>
using namespace std;
int num[10005];
int main(){
int tot;
int l,r;
int x;
int ans=0;
cin>>tot>>l>>r;
for(int i=1;i<=tot;i++){
cin>>num[i];
}
for(int i=l;i<=r;i++){
ans+=num[i];
}
cout<<ans;
}
2.这是一个直观的思路,但我们要现在换一种做法,用前缀和。
我们可以向上面的公式一样,预处理出这个数组的前缀和,这个过程在输入的过程中即可完成,
然后你就会发现,答案就是S[r]-S[l-1],毕竟前r个数的和减去前l-1个数的和,不就是区间[l,r]上的所有数字和吗
代码如下:
#include<iostream>
using namespace std;
int num[10005];
int main(){
int tot;
int l,r;
int x;
cin>>tot>>l>>r;
for(int i=1;i<=tot;i++){
cin>>x;
num[i]=num[i-1]+x;
}
cout<<num[r]-num[l-1];
}
下面给出严格的定义:
那么第二种方法相较于第一种方法有什么好处呢?
两者的差异在某些重复计算的问题中(比如DP)是显著的,如果预处理了前缀和,每次计算区间和就花费一次相减的时间,而如果没有,那么相加的次数就随区间长度的增大线性增长,在数据量庞大的时候是不可取的
二维前缀和
我们先上问题:
给定一个二维数组A,要求输出以(1,1)和(x,y)构成的矩形内所有A[i][j]的和
(第一行输入数组的宽width,高height,以及x和y,接下来有height行,每行width个数,输入二维数组A)
我们画一个图,实际上就是求图中的红色这一部分:
注解:以下所有图中的点的坐标不是图中的点,而是图中对应的方格,不要迷了
我们先上公式:
这个公式什么意思呢?
S[x][y]表示以(1,1)和(x,y)构成的矩形内所有A[i][j]的和,即二维数组的前缀和
a[x][y]表示(x,y)这个点的数值
这个公式我们也可以用图理解,如下:
现在我们要求的是(x,y)围成的矩形
我们分别把目光聚焦于图中的(x,y-1)和(x-1,y),这两个矩形相加中间那个深色的区域会加上两次,我们让它再减去(x-1,y-1)就可以去重,最后再加上(x,y)这个单独点的值,就拼成了(x,y)这个矩形,求和完毕。
实际上,我们只需要一个数组;另外注意边界问题,i-1和j-1有可能越界,以(1,1)为起点即可
代码如下:
#include<iostream>
using namespace std;
int dp[5000][5000];
int main(){
int width,height,x,y;
int num;
cin>>width>>height>>x>>y;
for(int j=1;j<=height;j++){
for(int i=1;i<=width;i++){
cin>>num;
dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1]+num;
}
}
cout<<dp[x][y];
}
进阶:
还是上面那个数组,我们要求求以(x1,y1)和(x2,y2)点围成的矩形内所有a[i][j]的和
问题转化为如图所示:
类比一维数组前缀和相减的思路,我们也尝试用我们预处理出来的二维数组前缀和来解决这个问题。其实很简单,我们只需把上述公式中的1替换一下就行:
那也就是(x1,y2)围成的矩形和(x2,y1)围成的矩形减去(x1,y1),那不就是下图中的黄色区域吗,让(x2,y2)减去(x1,y1)不就是蓝色区域吗,求和完毕
代码如下
#include<iostream>
using namespace std;
int dp[5000][5000];
int main(){
int width,height,x1,y1,x2,y2;
int num;
cin>>width>>height;
cin>>x1>>y1>>x2>>y2;
for(int j=1;j<=height;j++){
for(int i=1;i<=width;i++){
cin>>num;
dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1]+num;
}
}
int res= dp[x2][y2]-dp[x1-1][y2]-dp[x2][y1-1]+dp[x1-1][y1-1];
cout<<res;
}
End~~
我认为我写得已经很通俗了,如果你不理解,可以评论下方发表你的问题。如有不对的地方,请多多指教。写作不易,谢谢支持!