前缀和(一维,二维)的讲解与应用

本文介绍了前缀和的概念及其在区间求和问题中的应用,包括一维前缀和如何简化区间求和计算,以及二维前缀和在处理矩形区域内元素求和问题上的方法。通过实例和公式解析,阐述了前缀和在减少重复计算中的优势,并提供了相关代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引子:

前缀和应用广泛,尤其是在区间求和上的应用,是OIer的必备知识,我想让大家通过这篇博客初识前缀和的厉害


一维前缀和:

对于一个给定的数列A,它的前缀和就是能通过递推来求出的信息之一,公式如下

                                                           S[i]= \sum_{j=1}^{i}A[j]

那么有人要问了,前缀和有什么用呢?

我们先看一个问题:

给定一个数列A,让你求区间[l,r]上所有数字的和

(第一行输入三个整数N,l,r,一下N行为数列中的数,输出区间[l,r]上的所有数字和)

1.传统的做法是是把区间上的每一个数都加起来

Res = A[l]+A[l+1]+....+A[r-1]+A[r]

代码如下:

#include<iostream>
using namespace std;
int num[10005];
int main(){
	int tot;
    int l,r;
	int x;
	int ans=0;
	cin>>tot>>l>>r;
	for(int i=1;i<=tot;i++){
        cin>>num[i];
	}
	for(int i=l;i<=r;i++){
		ans+=num[i];
	}
	cout<<ans;
}

2.这是一个直观的思路,但我们要现在换一种做法,用前缀和。

我们可以向上面的公式一样,预处理出这个数组的前缀和,这个过程在输入的过程中即可完成,

然后你就会发现,答案就是S[r]-S[l-1],毕竟前r个数的和减去前l-1个数的和,不就是区间[l,r]上的所有数字和吗

代码如下:

#include<iostream>
using namespace std;
int num[10005];
int main(){
	int tot;
    int l,r;
	int x;
	cin>>tot>>l>>r;
	for(int i=1;i<=tot;i++){
		cin>>x;
		num[i]=num[i-1]+x;
	}
	cout<<num[r]-num[l-1];
}

下面给出严格的定义:

                                   sum(l,r)= \sum_{j=l}^{r}A[j] = S[r] -S[l-1]

那么第二种方法相较于第一种方法有什么好处呢?

两者的差异在某些重复计算的问题中(比如DP)是显著的,如果预处理了前缀和,每次计算区间和就花费一次相减的时间,而如果没有,那么相加的次数就随区间长度的增大线性增长,在数据量庞大的时候是不可取的

二维前缀和

我们先上问题:

给定一个二维数组A,要求输出以(1,1)和(x,y)构成的矩形内所有A[i][j]的和

(第一行输入数组的宽width,高height,以及x和y,接下来有height行,每行width个数,输入二维数组A)

我们画一个图,实际上就是求图中的红色这一部分:

注解:以下所有图中的点的坐标不是图中的点,而是图中对应的方格,不要迷了

我们先上公式:

                         S[x][y]=S[x-1][y]+S[x][y-1]+S[x-1][y-1]+a[x,y]       

这个公式什么意思呢?

S[x][y]表示以(1,1)和(x,y)构成的矩形内所有A[i][j]的和,即二维数组的前缀和

a[x][y]表示(x,y)这个点的数值

这个公式我们也可以用图理解,如下:

 现在我们要求的是(x,y)围成的矩形

我们分别把目光聚焦于图中的(x,y-1)和(x-1,y),这两个矩形相加中间那个深色的区域会加上两次,我们让它再减去(x-1,y-1)就可以去重,最后再加上(x,y)这个单独点的值,就拼成了(x,y)这个矩形,求和完毕。

实际上,我们只需要一个数组;另外注意边界问题,i-1和j-1有可能越界,以(1,1)为起点即可

代码如下:

#include<iostream>
using namespace std;
int dp[5000][5000];
int main(){
	int width,height,x,y;
	int num;
	cin>>width>>height>>x>>y;
	for(int j=1;j<=height;j++){
		for(int i=1;i<=width;i++){
			cin>>num;
			dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1]+num;
		}
	}
	cout<<dp[x][y];
}

进阶:

还是上面那个数组,我们要求求以(x1,y1)和(x2,y2)点围成的矩形内所有a[i][j]的和

问题转化为如图所示:

 类比一维数组前缀和相减的思路,我们也尝试用我们预处理出来的二维数组前缀和来解决这个问题。其实很简单,我们只需把上述公式中的1替换一下就行:

那也就是(x1,y2)围成的矩形和(x2,y1)围成的矩形减去(x1,y1),那不就是下图中的黄色区域吗,让(x2,y2)减去(x1,y1)不就是蓝色区域吗,求和完毕

 

代码如下

#include<iostream>
using namespace std;
int dp[5000][5000];
int main(){
	int width,height,x1,y1,x2,y2;
	int num;
	cin>>width>>height;
	cin>>x1>>y1>>x2>>y2;
	for(int j=1;j<=height;j++){
		for(int i=1;i<=width;i++){
			cin>>num;
			dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1]+num;
		}
	}
	int res= dp[x2][y2]-dp[x1-1][y2]-dp[x2][y1-1]+dp[x1-1][y1-1];
	cout<<res;
}

End~~

我认为我写得已经很通俗了,如果你不理解,可以评论下方发表你的问题。如有不对的地方,请多多指教。写作不易,谢谢支持!

       

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

感谢有你陪伴

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值