【机器学习-西瓜书】第7章 贝叶斯分类器

本文详细介绍了贝叶斯决策论,包括贝叶斯分类器的基本原理,极大似然估计用于估计类条件概率的方法,以及朴素贝叶斯分类器和半朴素贝叶斯分类器的差异。重点讨论了属性条件独立性的假设及其在朴素贝叶斯中的应用,以及如何在数据不充分时使用平滑技术。同时,提到了贝叶斯网和EM算法在处理隐变量时的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7.1 贝叶斯决策论 (Bayesian Decision Theory)

在所有相关概率都已知的情况下,贝叶斯决策论考虑的是:如何基于这些概率和误判损失来选择最优的类别标记。

以多分类任务为例解释BDT的基本原理

Y=\{c_{1}, c_{2}, ..., c_{N}\}

\lambda _{ij} 表示  将真实标记 cj 的样本误分类为 ci 所产生的损失。基于后验概率 P(c_{i}|x) 可得到 将样本 x 分类为 ci 所产生的期望损失:

R(c_{i}|x) = \sum_{j=1}^{N}\lambda_{ij} P(c_{j}|x)

我们的目标是:寻找一个判定准则 h: X \mapsto Y 以最小化总体风险:

R(h) = E_{x}[R(h(x)\ |\ x)]

贝叶斯判定准则:为最小化总体风险,只需 在每个样本上选择那个能使条件风险 R( c|x )最小的类别标记:

h^{\ast}(x) = \underset{c \in Y}{arg \ min} \ R( c|x )\ \ \ \ \ \ \ \ \ \ \ \ (7.3)\\ =\underset{c \in Y}{arg \ max} P(c|x)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (7.6)

此时,h^{\ast}(x) 称为贝叶斯最优分类器 (Bayes optimal classifier)即对每个样本 x, 选择能使 后验概率 P( c|x ) 最大的类别标记。

discriminative models:给定 x, 通过直接建模 P( c|x ) 来预测c。比如  决策树、BP神经网络、SVM等

generative models:先建模 联合概率分布 P(x, c),然后由此获得 P( c|x )。比如贝叶斯分类器。

根据贝叶斯定理,有

P(c|x) = \frac{P(c)P(x|c)}{P(x)} \ \ \ \ \ \ \ (7.8)

其中,P(c)表示 类先验prior概率;P(x|c)表示 样本x 相对于 类标记c 的类条件概率,也称为“似然”(likelihood),P(x) 表示归一化证据evidence因子。

别注:若加上属性条件独立性假设(同时也是朴素贝叶斯的基本假设),则有

P(c|x) = \frac{P(c)P(x|c)}{P(x)}= \frac{P(c)}{P(x)}\prod_{i=1}^{d} P(x_{i}|c) \ \ \ \ (7.14)

d 表示属性数目,xi 表示 x在第 i 个属性上的取值。

类先验概率P(c) 反映了样本空间中 各类样本所占的比例,当训练集足够大时,可通过各类样本出现的频率来估计。

类条件概率P(x|c) 由于涉及关于x所有属性的联合概率,所以直接根据有限的训练样本出现频率来估计 将十分困难。

### 朴素贝叶斯分类器机器学习中的应用及其实现 #### 原理概述 朴素贝叶斯分类器基于贝叶斯定理构建,假设特征之间相互独立。这一假设使得计算条件概率变得更为简便,从而提高了模型训练效率[^1]。 #### 实现过程 以下是使用 `scikit-learn` 库实现朴素贝叶斯分类器的一个具体例子: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score # 加载数据集 data = load_iris() X, y = data.data, data.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 初始化高斯朴素贝叶斯模型 model = GaussianNB() # 训练模型 model.fit(X_train, y_train) # 预测测试集标签 y_pred = model.predict(X_test) # 输出准确率 accuracy = accuracy_score(y_test, y_pred) print(f"模型准确率为: {accuracy:.2f}") ``` 上述代码展示了如何加载鸢尾花数据集、划分训练集与测试集、初始化高斯朴素贝叶斯模型以及评估其性能。 #### 特点分析 相比于其他复杂的分类算法,朴素贝叶斯具有以下几个显著特点: - **高效性**:由于假设特征间独立,减少了参数估计的数量,适合处理大规模数据集。 - **易用性**:无需调整过多超参数即可获得较好的效果,在某些场景下甚至优于更复杂的模型[^2]。 #### 应用领域 除了常见的文本分类任务外,朴素贝叶斯还被广泛应用在医疗诊断、信用评分等多个领域中。例如通过患者的症状描述预测可能患有的疾病类型;或者利用客户的财务状况判断是否存在违约风险等问题都可以采用该方法解决[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值