- 博客(27)
- 收藏
- 关注
原创 LiteSpiralGCN: Lightweight 3D hand mesh reconstruction via spiral graph convolution
::代码链接:
2025-07-12 15:00:00
605
原创 Edge-guided 3D reconstruction from multi-view sketches and RGB images
EBNet (Edge-based Network)EGNet (Edge-Guided Network)MEGNet (Multi-view Edge-Guided Network)图示结构:关键符号:
2025-07-12 09:30:00
587
原创 Semi-supervised single-view 3D reconstruction via multi shape prior fusion strategy and self-attenti
:代码链接:原文链接:
2025-07-11 15:23:38
995
原创 Semi-Supervised Single-View 3D Reconstruction via Prototype Shape Priors
原文链接:2209.15383代码链接:
2025-07-11 14:51:23
880
原创 3D Surface Reconstruction with Enhanced High-Frequency Details
作者提出了一种名为的新方法,核心思想是利用图像中的来引导和约束重建过程,从而增强表面细节的恢复。
2025-07-10 16:33:06
1021
原创 SketchSplat: 3D Edge Reconstruction via Differentiable Multi-view Sketch Splatting
实现端到端的3D边缘重建,其核心价值在于跳过点云重建环节,直接优化参数化边缘。与SDF的结合通过隐式梯度约束与混合监督实现,在保留锐利特征的同时提升几何合理性。:SketchSplat通过。
2025-07-10 15:06:22
487
原创 ADR-SALD: Attention-Based Deep Residual Sign Agnostic Learning With Derivatives for Implicit...
一、核心方法:ADR-SALD架构1. 问题定义目标:直接从原始点云/三角面片汤(无定向法向量)学习高质量隐式神经表示,解决现有方法在薄结构重建大间隙处理和细节保留上的不足。挑战:避免依赖预计算的SDF监督信号,同时消除表面片(surface sheet)伪影。2. 网络架构编码器(Encoder)残差特征提取块(DR-FE Block)6层结构,每层包含:1D卷积(核大小1×1)→ Group Normalization → ReLU跳跃连接(类似ResNet)保留低频特征。
2025-07-09 15:00:00
782
原创 SALD: Sign Agnostic Learning with Derivatives
提出一种名为 SALD 的新方法,用于直接从原始、未处理的 3D 数据(如点云、无定向网格、原始扫描)学习高质量的隐式神经表示(即神经网络表示的 3D 形状),而无需依赖预先计算好的带符号距离场作为监督信号。直接从原始 3D 数据学习形状表示具有挑战性,但非常重要,因为它避免了为训练数据生成高质量带符号距离场的繁琐且有时不可行的预处理步骤。原始数据通常存在方向不一致、缺失部分、非流形结构等问题。
2025-07-09 10:07:26
890
原创 SAL: Sign Agnostic Learning of Shapes from Raw Data
现有的基于神经网络的隐式表面表示方法(如 DeepSDF, Occupancy Networks)需要从带符号的隐式函数(如带符号距离函数 SDF 或占据函数)中采样数据作为监督信号进行训练(回归损失)。然而,现实世界中获取的原始 3D 数据(点云、三角面片汤)通常是无符号的(没有法向或内外信息),计算其精确的带符号隐式表示是一个困难且通常需要繁琐预处理(如法向估计、水密化)的问题。这限制了深度学习方法在真实世界几何数据上的应用。提出一种。
2025-07-08 16:43:18
863
原创 Implicit Geometric Regularization for Learning Shapes
《隐式几何正则化学习形状》提出了一种直接从点云数据学习高质量隐式神经表示的新方法。核心创新在于仅使用简单的损失函数(点云拟合项+Eikonal正则化项)就能实现几何正则化效果,无需预计算SDF监督或显式零水平集采样。理论分析表明,对于线性模型,优化过程会收敛到合理的SDF解。实验证明,该方法在表面重建和形状空间学习任务中表现优异,能够重建更多几何细节,在多个基准测试上优于当时的最先进方法。主要优势在于简化了监督信号需求,但存在对法向量噪声敏感的局限性。
2025-07-08 15:41:40
641
原创 EmbodiedOcc++: Boosting Embodied 3D Occupancy Prediction with Plane Regularization and Uncertainty S
EmbodiedOcc++:通过平面正则化和不确定性采样提升具身3D占用预测 本文提出EmbodiedOcc++,针对室内场景的几何特性(如平面结构)优化3D占用预测。核心创新包括:1)几何引导优化模块(GRM),通过法线切平面约束高斯位置更新,结合曲率和深度自适应调整权重,平衡平面对齐与复杂结构适应性;2)语义感知不确定性采样器(SUS),基于语义熵筛选低置信度高斯,减少冗余计算(跳过熵值<0.3的高斯,效率提升21.5%)。实验表明,在ScanNet数据集上,局部和具身预测的mIoU分别提升1.8
2025-07-07 11:28:35
928
原创 A Dual-Perspective Self-Supervised IoT Intrusion Detection Method Based on Topology Reconstruction a
本文提出了一种基于双视角图增强的自监督物联网入侵检测方法。该方法通过拓扑重构和特征扰动两种策略生成损失图,使用EE-GraphSAGE编码器捕获网络拓扑信息,并设计了自适应余弦损失函数优化特征学习。实验表明,该方法在多个数据集上优于现有模型,且轻量化设计(编码器294KB,分类器1.3MB)适合资源受限的物联网环境。创新点包括:1)双视角图增强策略;2)边增强图编码器;3)自适应加权机制。该方法为物联网安全提供了一种高效、可扩展的解决方案,尤其适用于标记数据稀缺的场景。
2025-07-07 10:26:42
678
原创 前端杂学录(九)
处理了基本数据类型、数组和对象的序列化。对于null和特殊类型进行了处理。AJAX:依赖于对象,需要手动设置请求头部和处理响应。axios:是一个现代的、基于promise的HTTP客户端,简化了请求的处理,支持请求和响应的拦截,转换数据格式等。fetch:是基于promise的 Web API,提供了一个更简洁和强大的方式来发起网络请求,但需要手动处理一些已经封装好的事情(如错误处理)。Element UI 表单组件的原理和通信机制主要依赖于 Vue.js 的响应式系统、自定义事件和属性机制。
2024-10-10 14:14:16
823
原创 前端杂学录(八)
从文本协议转变为二进制协议,提高了解析效率。引入多路复用,允许并行请求,消除了队头阻塞。采用头部压缩,减少了带宽消耗。实现服务器推送,提高了资源加载效率。简化连接管理,使用单一连接处理多个请求。Set和对象/Map 方法性能较好,语法简洁。filter和reduce方法代码简单,但性能较差,适合小数组。JSON 方法:适合简单、无函数和特殊对象的场景,代码简洁。递归方法:灵活性高,适合需要处理复杂嵌套对象的情况。Lodash 的cloneDeep。
2024-10-10 14:13:49
1152
原创 前端杂学录(七)
协议是指在计算机网络中,通信双方为实现信息交换而约定的规则和约束。这些规则定义了数据格式、传输方式、错误处理、数据压缩等内容。网络协议确保不同设备和系统可以在网络中有效地通信。
2024-10-07 21:13:44
1058
原创 前端杂学录(六)
方法优点缺点兼容性Flexbox简洁易读,支持弹性布局,现代浏览器支持不适用于 IE9 及更低版本现代浏览器Grid 布局语法简洁,强大灵活,支持复杂布局对简单布局来说有点复杂,兼容性有限现代浏览器transform兼容性好,适用于动态内容依赖transform,内容变化时需调整IE9+简单,适合固定宽高的块级元素仅适用于固定宽高的元素IE6+table-cell布局兼容性好,适合文本居中表格布局不语义化,结构复杂IE8+text-align适合单行文本,代码简单。
2024-10-07 14:57:45
977
原创 前端杂学录(五)
Service Workers 是一种在浏览器与网络之间运行的脚本,能够拦截和处理网络请求。它们在后台运行,与网页分开,因此可以在没有页面加载的情况下进行操作。Cache API 是一种存储和检索 HTTP 请求及其相应的响应的机制。它通常与 Service Workers 一起使用,允许开发者在离线时提供快速的资源访问。Canvas API 是一种以位图方式进行绘图的技术,可以在网页上动态绘制图形、动画和游戏。SVG(可缩放矢量图形)是一种基于 XML 的图形格式,适合用于矢量图形和动画。
2024-10-01 17:27:19
2475
原创 前端杂学录(四)
用于创建一个新对象,指定原型。:用于定义或修改对象的属性,可以控制属性的特性(如可写、可枚举等)。:用于获取对象的可枚举属性的键名数组。
2024-10-01 14:55:26
831
原创 前端杂学录(三)
ECMAScript:是由 ECMA 国际组织制定的标准,定义了一种脚本语言的规范。它描述了语言的基本语法、类型、对象、流程控制等核心特性。JavaScript:是 ECMAScript 标准的一种实现,通常被称为“脚本语言”,由 Netscape 在 1995 年首次推出。JavaScript 增加了许多 ECMAScript 所没有的功能,如 DOM 操作、浏览器 API 等。map:用于转换数组中的每个元素,返回新数组。filter:用于过滤数组中的元素,返回满足条件的新数组。reduce。
2024-09-29 13:52:25
999
原创 前端杂学录(二)
字符串转数组:常用方法有split()、扩展运算符、等。字符串转数字:常用方法有Number()parseInt()和一元加号等。IIFE 是一种有效的 JavaScript 编程模式,能够创建局部作用域,避免全局变量污染,并且在需要立即执行代码的场景中非常实用。随着 ES6 的模块化功能引入,IIFE 的使用逐渐减少,但在某些场合依然非常有用词法作用域:作用域在编写代码时确定,基于代码结构。大多数现代语言使用此机制。动态作用域:作用域在运行时确定,取决于函数的调用顺序。
2024-09-27 12:57:48
967
原创 前端杂学录(一)
原始类型:存储在栈内存中,值是直接存储的,数据大小固定,访问速度快。引用类型:存储在堆内存中,变量保存的是对数据的引用,数据大小动态变化,适合复杂的数据结构。垃圾回收:JavaScript 自动管理内存,使用垃圾回收器清理不再使用的对象,以防止内存泄漏。改变原数组的方法push()pop()shift()unshift()splice()sort()reverse()。不改变原数组的方法map()filter()reduce()slice()concat()find()some()every()。
2024-09-27 11:10:30
1138
原创 Visual Studio 2015 安装过程中出现“安装包丢失或损坏”错误的解决方法
Visual Studio 2015 安装过程中出现“安装包丢失或损坏”错误的解决方法
2023-01-17 11:15:28
4651
5
原创 论文写作总结
作为一名研究生,无论学硕还是专硕,论文的撰写都是必不可少的,而如何写好一篇论文,以及在论文写作过程中我们需要注意的问题有哪些,这些都是我们需要注意的。在拜读了闵帆老师的论文写作后,做如下总结。
2022-12-15 11:26:06
369
原创 OpenSceneGraph-3.0.1 VS2019编译过程
VS2019下用Cmake来编译OpenSceneGraph-3.0.1 并生成头文件等
2022-11-14 22:35:14
474
离散数学西南石油大学2017年离散结构考试试卷:计算机及相关专业基础课程考核
2025-07-10
【计算机教育】面向对象程序设计(C#)课程教学大纲:理论与实践结合的编程能力培养体系
2025-07-10
【计算机科学】离散结构考试答案解析:涵盖单选题、逻辑推理、组合数学及图论应用
2025-07-10
离散数学2015年西南石油大学离散结构考试试卷答案解析:涵盖选择题、填空题、判断题及证明题详解2015
2025-07-10
【数据库技术】《数据库原理及应用》教材习题参考答案:涵盖数据管理技术发展、数据库系统结构与功能、SQL语言及数据库设计等知识点解析
2025-07-10
离散数学2017年秋季学期离散结构结业考试答案及评分标准:涵盖选择题、填空题、判断题和综合题解析
2025-07-10
离散数学西南石油大学2016年离散结构考试试卷:涵盖命题逻辑、集合论、递推关系与关系闭包计算
2025-07-10
离散数学西南石油大学2015年离散结构考试试卷:计算机专业基础课程考核内容汇总
2025-07-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人