36、实时机器学习的时间窗口特征处理与模型训练

实时机器学习的时间窗口特征处理与模型训练

1. 数据读取与初步处理

当输入为 local 时,我们可以使用以下代码读取本地的 JSON 文件:

if input == 'local':
    input_file = './alldata_sample.json'
    flights_output = '/tmp/'
    events = (
            pipeline
            | 'read_input' >> beam.io.ReadFromText(input_file)
            | 'parse_input' >> beam.Map(lambda line: 
                                        json.loads(line))
    )

此时, events 是一个字典的 PCollection ,与从 BigQuery 读取的数据格式相同。运行这段代码,确保输入文件中的事件被正确写入 CSV 文件。完成读写操作后,我们可以开始进行数据转换。

2. 数据过滤

大多数数据管道会处理数据流,选择感兴趣的数据并进行某种转换。选择要继续处理的数据的过程称为过滤。在创建训练数据集时,我们需要过滤事件集,只包含正常运行的航班:

def is_normal_opera
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值