基于机器学习技术预测透析中低血压的研究
在医疗领域,透析中低血压(IDH)是血液透析过程中最常见的不良并发症,对终末期肾病患者的生活质量有着重大影响。因此,对IDH的预测和预防显得尤为重要。本文将探讨不同机器学习技术在预测IDH方面的应用,并对其性能进行比较。
1. 数据集与参数设置
有五组不同的数据集(A、B、C、D、E),每组数据集都有对应的γ和C值:
- 数据集A:γ = 0.3474,C = 1.5849;
- 数据集B:γ = 0.1672,C = 1.5849;
- 数据集C:γ = 0.0805,C = 7.9433;
- 数据集D:γ = 0.7219,C = 1.5849;
- 数据集E:γ = 0.7219,C = 1.5849。
2. 算法评估指标
为了评估算法性能,采用了混淆矩阵分析,并引入了多个参数:
- 总体准确率(Overall Accuracy) :衡量模型正确识别状况的能力,是真实结果在总检测案例中的占比。
- 精确率(Precision) :指检索到的相关实例的比例,在本文表格中,精确率值针对预测目标类(IDH事件)。
- 召回率(Recall) :表示检索到的相关实例的比例,同样在表格中针对IDH事件。
- ROC曲线下面积(AUC) :作为ROC性能指标,它独立于决策标准和先验概率,可看作分类器将随机选择的正实例排名高于随机选择的负实例的概率。
总体准确率、精