非延展加密与单服务器私有信息检索通信复杂度研究
1 非延展加密相关研究
1.1 非延展加密结论推导
在非延展加密的研究中,结合三个声明可以得出,对于每一个概率多项式时间(PPT)敌手 A,存在一个 PPT 敌手 B,使得对于 (b \in {0, 1}),有如下关系:
[
\left\langle NME_b(\Pi, A, k, p(k)) \right\rangle \stackrel{c}{\approx} \left\langle NME^{(1)}_b(\Pi, A, k, p(k)) \right\rangle \stackrel{s}{\approx} \left\langle NME^{(2)}_b(\Pi, A, k, p(k)) \right\rangle \equiv \left\langle mIND_b(E, B, k, 9k^2) \right\rangle
]
根据命题 1,(mIND_0(E, B, k, 9k^2) \stackrel{c}{\approx} mIND_1(E, B, k, 9k^2)),这就完成了定理 1 的证明。
1.2 实现有界 CCA2 非延展性
为了实现有界 CCA2 攻击下的非延展性,需要对方案进行修改。在非延展性实验中,允许敌手最多对解密预言机(Dec)进行 (q) 次查询(但不能对 (y) 进行查询)。具体的修改方式类似于 [CHH+07] 对 [PSV06] 方案的修改:
- 将矩阵的列数从 (10k) 增加到 (80(k + q))。
- 将多项式 (p) 的次数和集合 (S) 的大小从 (k) 增加到 (8(k + q))