高效模式召回的阈值学习矩阵与乳腺癌病理病变计算机辅助诊断系统
在模式识别和医学诊断领域,有两项重要的技术值得深入探讨,分别是阈值学习矩阵(Thresholded Learning Matrix)用于高效模式召回,以及计算机辅助诊断系统(CAD)用于检测乳腺癌病理病变。
阈值学习矩阵
阈值学习矩阵算法是为克服Lernmatrix的弱点而提出的。由于模式之间的顺序关系意味着其特征集之间也存在顺序关系,反之亦然,因此可以通过为每个召回模式计算动态阈值来解决交叉开关饱和问题。该算法的学习阶段与Lernmatrix相同,但召回阶段则完全不同。
以下是相关的定义和规则:
1. 模糊召回类向量 (C_{\omega}) :设 (A = {0, 1}),(x_{\omega} \in A^n) 是一个模式,关联记忆 (M) 的第 (ij) 个分量表示为 (m_{ij}),则 (C_{\omega}) 的第 (i) 个分量为:
[C_{\omega i} = \sum_{j=1}^{n} m_{ij} \cdot x_{\omega j}]
2. 动态阈值 (θ_{\omega}) :设 (\vee) 是最大运算符,(\varepsilon) 是任意正常数,则 (θ_{\omega}) 为:
[θ_{\omega} = \frac{1}{\varepsilon} \sum_{h=1}^{p} [C_{\omega h}]]
将 (C_{\omega}) 的表达式代入可得:
[θ_{\omega} = \frac{1}{\varepsilon} \sum_{h=1}