电机故障模式识别与多类不平衡问题的神经网络研究
电机绕组短路与电压不平衡模式识别
模式创建
为了识别电机中的匝间短路和电压不平衡模式,首先创建特定的模式。在瞬态启动阶段,添加五个瞬态速度点和五个瞬态电流点,这样针对特定模式总共创建了 16 个点。这 10 个新增点会相对于正常运行状态进行归一化处理,即把获得的速度和电流值除以同一时刻正常运行时的值。因此,在正常运行时,这 10 个点的值为 1;在异常情况下,这些点的值会根据故障类型大于或小于 1。
人工神经网络设计
选择的人工神经网络用于模式识别,具有 16 个输入神经元,每个神经元对应上述部分描述的一个值。输出层有 9 个神经元,分别对应 8 种可能的异常情况和 1 种正常情况。当识别到自身对应的情况时,每个输出神经元会被激活为“1”。经过多次测试,该神经网络采用两个隐藏层效果较好,第一层有 13 个神经元,第二层有 11 个神经元。两个隐藏层的激活函数为“logsig”,输出层使用“purelin”函数。训练性能良好,在 223726 个训练周期内误差达到 1e - 3。
结果分析
使用 30 个电机对神经网络进行测试,其中 10 个是真实电机,另外 20 个是模拟电机。5 个真实电机存在已知的定子绕组短路情况,其他电机则进行了不平衡电压处理。20 个模拟电机呈现出一系列匝间短路和电压不平衡情况。结果如下表所示:
| 电机类型 | 匝间短路电机数量 | 电压不平衡电机数量 | 匝间短路准确率(%) | 电压不平衡准确率(%) |
| — | — | — | — | — |
| 真实电机 | 5 | 5 | 85 | 90 |