神经网络多类不平衡问题研究与向量量化快速搜索算法
在机器学习和数据处理领域,多类不平衡问题以及向量量化的高计算复杂度是两个重要的挑战。本文将深入探讨通过神经网络解决多类不平衡问题的策略,以及一种基于扩展联想记忆的向量量化快速搜索算法。
神经网络解决多类不平衡问题
在处理包含多个类别的数据库时,类不平衡问题是一个常见的挑战。研究中使用了批量模式下的反向传播算法训练神经网络(NN),并研究了四种不同的策略来平衡每个类别的均方误差(MSE)。这些策略的核心是在训练算法中使用不同类型的成本函数。
通过对Cayo、Ecoli6、Feltwell和Satimage等数据库的实验,我们可以看到不同模型(MLP、RBFNN和RBF - RVFLN)在不同策略下的表现。以Satimage数据库为例,其分类性能如下表所示:
|模型|选项|Acc|gmean|Kappa|
| ---- | ---- | ---- | ---- | ---- |
|MLP|Option 0|82.19(0.16)|50.81(2.76)|0.78(0.0)|
|MLP|Option 1|85.64(0.59)|84.23(0.60)|0.82(0.01)|
|MLP|Option 2|87.41(0.55)|86.31(0.41)|0.85(0.01)|
|MLP|Option 3|86.31(0.49)|83.64(1.13)|0.83(0.01)|
|MLP|Option 4|83.05(0.62)|77.20(4.06)|0.79(0.01)|
|RBFNN|Option 0|83.21(0.74)|76.82(1.84)|0.79(