向量量化与无权重神经网络算法研究
1. 向量量化算法对比
在向量量化(VQ)领域,LBG-VQ 过程使用浮点运算,不过结果可以用整数表示。LBG-VQ 所需的总字节数为((2 + 4 + N^2 + n^2 + M^2)) 。
为了对比不同算法的性能,进行了相关实验。实验针对 N = 128、256 和 512 进行,对比了 LBG 和 FSA - EAM 算法在每个像素平均操作数方面的计算复杂度。结果如下表所示:
|算法|时间复杂度|内存需求|
| ---- | ---- | ---- |
|LBG|较高|较大|
|FSA - EAM|较低|较小|
从时间复杂度来看,FSA - EAM 算法相较于 LBG 算法有显著改进。在进行 VQ 过程时,FSA - EAM 所需的内存也小于 LBG 算法。这表明 FSA - EAM 算法在效率和资源利用方面具有优势。
2. 无权重神经网络简介
无权重神经网络(WNNs)是从人工神经网络发展而来的计算模型,常用于模式识别任务。其特点是输入和输出均为二进制值,每个神经元的功能由随机访问存储器(RAM)组成的查找表实现。
早期,Bledsoe 和 Browning 在 1959 年提出了 n - tuple 方法,该方法基于分布式计算,采用一次性记忆任务,具有通过记忆学习的简单性和操作速度快的特点。随后,Aleksander 将 n - tuple 采样机应用于自适应神经网络。随着高容量、低成本 RAM 存储器的出现,推动了更高容量机器的发展。后来,许多重要研究开发了基于 n - tuple 理论扩展的 WNNs 模型,并使用其他技术进行对象