63、基于局部外观方法的人脸识别新组合及视频人脸识别最佳图像选择

基于局部外观方法的人脸识别新组合及视频人脸识别最佳图像选择

在当今科技发展中,人脸识别技术在安全监控等众多领域有着广泛应用。然而,光照变化和图像质量等问题一直是影响人脸识别准确性和效率的关键因素。本文将介绍两种相关的技术方法,一是基于局部外观方法的人脸识别新组合,二是利用FPGA进行视频人脸识别的最佳图像选择。

基于局部外观方法的人脸识别新组合
  • LBP算子与光照变化 :LBP(Local Binary Patterns)算子常用于描述面部特征,有研究宣称它对光照变化具有鲁棒性。但实际上,只有在光照变化是单调的情况下,LBP算子才具有不变性。在现实应用中,光照变化往往并非单调,LBP算子会随光照变化而改变,这表明它对这类光照变化较为敏感。从Lambertian模型下的像素分析来看,LBP算子描述的像素强度差异在多数情况下代表了入射光照的变化。
  • 离散余弦变换(DCT)补偿光照变化 :DCT在一些人脸识别研究中被应用,其常规做法是提取DCT系数,去除左上角仅对应像素强度平均值的系数,再通过锯齿形扫描提取含最高信息的系数组成特征向量供分类器使用,但提取多少和哪些系数来组成特征向量仍是待解决的问题。有一种方法是在对数域中通过对给定图像添加或减去补偿项来补偿光照变化,由于光照变化主要在低频带,可通过去除低频分量来减少光照变化影响。具体是将图像从空间域转换到频率域,把低频DCT系数置零,该方法取得了不错的效果。
  • 提出的新方法 :综合分析LBP和DCT方法在人脸识别中的应用,发现LBP算子对光照条件的大幅变化敏感,而对数域的DCT方法在处理光
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值