面部动作单元分类与多类目标检测方法解析
在计算机视觉领域,面部动作单元分类和多类目标检测是两个重要的研究方向。前者有助于深入理解面部表情背后的动作机制,后者则在众多实际应用中发挥着关键作用。下面将详细介绍相关的方法和实验结果。
集成方法在面部动作单元分类中的应用
在面部动作单元分类中,集成方法是一种有效的策略。通过对多个分类器的结果进行综合,可以提高分类的准确性和稳定性。
- 解码方法
- 解码过程中,权重 $\alpha_{jl}$ 允许为第 $l$ 类和第 $j$ 个分类器分配不同的权重。当 $\alpha = 1$ 时,汉明解码采用硬决策,$L1$ 范数解码采用软决策。
- 虽然存在多种解码方式,但理论和实验表明,只要与问题无关的代码足够长且基分类器足够强大,性能受影响不大。本文使用随机代码,其中 $B = 200$ 且 $k = 12$,其性能几乎与为纠错特性优化的预定义代码相当。
- 在第 4 节的加权编码中,使用 Adaboost 对数公式来设置公式 (1) 中的权重 $\alpha$。
- OOB 估计
- 为了获得 OOB(Out - of - Bag)估计,仅使用集合 $OOB_m$ 中的分类器对第 $p$ 个模式进行分类,$OOB_m$ 定义为第 $p$ 个模式为 OOB 的分类器集合。对于 OOB 估计,公式 (1) 中的求和修改为 $\sum_{j\in OOB_m}$。也就是说,如果 $Z$ 的列对应于使用第 $p$ 个