多类Adaboost和耦合分类器在目标检测中的应用
1. 引言
在目标检测领域,需要高效且准确的分类器来识别不同类别的对象。现有的一些系统存在各种问题,比如不能充分利用类别之间的相似性、随着类别数量增加可扩展性差等。本文提出的系统具有以下优势:
- 基于多类分类器,不同于部分现有方法。
- 分类器对应嵌套多类级联,提高效率和鲁棒性。
- 训练过程具有良好的可扩展性,训练时间不会随类别数量呈指数增长。
- 无需对类别进行先验划分。
本文将介绍相关工作、提出的多类嵌套级联及其训练算法、不同的训练多类弱分类器的变体,最后展示实验结果并给出结论。
2. 相关工作
2.1 级联分类器
级联分类器是解决目标检测问题的有效方法。由于分类问题的自然不对称性,图像中大部分待分析的窗口是背景(非目标窗口)。为了实现高效检测,应在非目标窗口上花费更少的时间。级联分类器由一系列复杂度逐渐增加的层组成,每层旨在拒绝非目标窗口,让目标窗口通过。
在相关研究中,使用Adaboost训练级联的每一层。Adaboost通过迭代最小化训练误差的上界来构建模型,关注每次迭代中分类错误的样本。每个弱分类器与一个特定特征相关联,特征可以从Haar-like小波等特征族中选择,其他常用特征还包括edgelets、修改后的局部二值模式(mLBP)和粒度特征等。弱分类器的函数族包括决策树桩、域划分分类器和CART分类器等。
2.2 嵌套级联
在已有研究基础上,提出了嵌套级联,通过让第k阶段的分类器利用前一阶段的信息,即$H_k(x) = H_{k - 1}(x) + \sum_