68、图金字塔中同源生成元的描绘

图金字塔中同源生成元的描绘

1. 引言

结构模式识别关注对象的描述和分类,它考虑对象各部分之间的关系,一定程度上忽略不同变换引起的几何变化。我们可以将几何对象分解为 0、1、2、3 等维度的单元,分别对应顶点、边、面、体等,进而从对象中提取相关的拓扑信息。

计算拓扑空间中的同源生成元意味着刻画其中的孔洞。一些方法会减少单元数量,从而计算由较少立方体或单纯形组成的对象的同源群。有一种方法利用图金字塔减少单元数量,高效地在顶层计算生成元,且计算出的生成元位于对象的边界上。

在图金字塔的交互式可视化方面,现有的工具使用直线绘制边,无法展示完整信息,如自环会消失,平行边会重叠。而在一些应用中,需要无损压缩的线图表示,以保留其几何结构和拓扑信息。同时,图绘制领域的方法主要关注节点的平面分布,通常不处理图金字塔中出现的自环和多边问题。因此,我们提出一种新算法,用于正确可视化图金字塔,保留原始图像的几何和拓扑结构。

2. 基础知识回顾
2.1 图金字塔

图金字塔 $P$ 是一系列逐步缩减的图的堆栈,即 $P = {G_0, \cdots, G_h}$。每个层级 $G_k = (V_k, E_k)$($1 \leq k \leq h$)是通过先收缩(收缩过程)再移除(简化过程)下一层级 $G_{k - 1}$ 中的边得到的。

收缩过程中,$G_{k - 1}$ 中被收缩的边定义了称为收缩核(CK)的树,其顶点会合并为上一层级 $G_k$ 中的一个顶点。每个收缩核中的一个顶点称为存活顶点,被认为会存活到下一层级。高层级的顶点通过等效收缩核(ECK)与原始输入相关联。

收缩过程由抽取参数 $(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值