圆柱全景传感器位姿估计
1. 图像轮廓跟踪策略
在图像轮廓跟踪中,单一策略往往存在局限性。例如,标准块匹配算法虽能评估程序性能,但无法根除问题。以块大小为 31X31 像素的标准块匹配算法应用于测试序列为例,当改变帧数和位移 Δs 时,Pratt 指数在 87% 到 47% 之间变化。
纯边缘检测策略也存在不足,在血管图像中,由于存在管腔、内膜、中膜、外膜和组织等多种结构,会产生相互接近的多个灰度级不连续,导致寻找最近轮廓的策略可能失败。而寻找相似灰度级的策略也不合适,因为它寻找的相似内容可能并非边缘点。
不过,将这两种策略顺序使用时,它们的缺点是可以接受的,因为它们具有互补性,能相互弥补不足。具体操作步骤如下:
1. 使用匹配具有相似特征区域的策略,使一帧的起始轮廓接近后续帧的相应轮廓。
2. 运用边缘检测策略来细化定位过程。
这样做无需包含全局准则的优化程序,因为两种策略可分别进行正则化,从而降低轮廓跟踪程序的计算成本。
2. 圆柱全景传感器位姿估计概述
传感器位姿估计旨在恢复两个(已校准)传感器的相对位姿。与平面图像或折反射图像相比,关于圆柱全景传感器位姿估计的研究较少。以往的研究存在局限性,如仅处理特定情况,未推广到多视图情况或实际相关案例。
现在,首次提出了一种成本函数,通过最小化该函数可解决两种一般情况下圆柱全景的位姿估计问题。
3. 圆柱全景图像获取与模型
360° 圆柱全景图像可通过多种方式获取,如旋转视频或矩阵传感器相机、折反射传感器(后续映射到圆柱体上)或旋转传感器线相机。为简化讨论,假设采用旋转传感器线相机的传感