71、可变形模型的递归形状与姿态确定及全景图像传感器姿态估计

可变形模型的递归形状与姿态确定及全景图像传感器姿态估计

在计算机视觉领域,可变形模型的形状与姿态估计以及全景图像传感器的姿态估计是重要的研究方向。下面将详细介绍相关的研究内容和方法。

全景图像传感器姿态估计

在全景图像的传感器姿态估计中,有一些关键要点。使用更多的对应点(如超过 100 个)并不能保证更好的估计结果。相反,使用 1000×10000 的图像分辨率,并且最近的场景点距离两个传感器都不小于 4 米时,能获得更好的结果。在这种情况下,R 和 T 的估计误差可以小于 0.5 度,即使输入误差高达 10 像素。

对于两个对称对的情况,可以使用常见的归一化 8 点算法。实验发现,在这种情况下,归一化 8 点算法中用于提高准确性和稳定性的归一化步骤可以忽略,这与平面图像的情况不同。使用高分辨率全景图像并仔细选择对应图像点时,所提出的方法通常能够实现小于 0.5 度误差的高精度。

误差敏感性分析表明,T 的估计通常比 R 的估计对噪声更敏感,并且两种估计误差与输入误差大致呈线性关系。此外,从水平全景图进行传感器姿态估计比从对称全景图对进行估计更敏感。

可变形模型的递归形状与姿态确定

可变形模型的运动和形状估计在许多应用中都很重要,如增强现实、人机交互或医学成像。这里主要关注从单目图像中的 2D 特征点来估计非刚性模型的形状和姿态。

  • 模型描述 :所提出的方法适用于具有由变形向量调制的刚性形状的 3D 参数化模型。形状 X 可以表示为 4*N 向量,每个模型实例是平均向量 X(模型的刚性部分)和 M 个由 σ 参数加权的变形向量的线性组合,即 X =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值