空气质量数据与语音图像关联处理的研究与实践
1. 空气质量数据的分析与预测
1.1 数据准备
空气质量数据的分析聚焦于二氧化硫(SO₂),数据来源于 RAMA 数据库,包含每小时的浓度样本,单位为 ppm。为便于计算,空气质量被分为五类:良好、一般、较差、很差和极差,并分别编码为 1、2、3、4、5。
构建了基础集和测试集,基础集包含 8040 个样本,测试集包含 672 个样本。以 10 个样本形成输入模式(n = 10),该值在初步测试中效果最佳。输出模式取自输入模式最后一个样本之后的样本。样本值以千分之一 ppm 呈现,因此乘以 1000 以处理整数。
基础集由 8029 个关联 (x, y) 组成,测试集由 661 个关联 (x, y) 组成,其中输入模式 x ∈R¹⁰,输出模式 y ∈R。
1.2 模型训练与预测
使用 Gamma 分类器,先用基础集进行训练,再将测试集输入,得到 SO₂ 浓度的预测值。根据这些预测值和表 2 中的方程,计算 IMECA 值,并将其分类到相应范围以确定 IMECA 级别。
1.3 实验结果示例
样本 | 浓度(P) | 浓度(R) | 浓度(E) | IMECA 值(P) | IMECA 值(R) | IMECA 值(E) | IMECA 级别(P) | IMECA 级别(R) |
---|