感知驱动的形状演化与彩色纹理模型:原理、方法与应用
在图像处理和计算机视觉领域,形状演化和纹理建模是两个重要的研究方向。形状演化旨在通过特定的算法对形状进行变换和优化,使其更符合人类的感知和需求;而纹理建模则致力于构建能够准确描述和合成自然纹理的数学模型。下面将详细介绍感知驱动的形状演化方法以及基于离散分布混合的彩色纹理模型。
感知驱动的形状演化
感知驱动的形状演化方法具有显著的形状保留特性,其演化结果与人类感知的形状部分高度契合。在某些程度上,其他一些方法也能实现一定的形状保留,但这些方法的演化过程由基于形状宽度概念的自适应全局速度函数控制,相比之下,该方法在形状保留方面更为出色。
为了更直观地对比,以甲虫形状的演化为示例。通过高斯平滑(对应于具有曲率速度的演化)和该形状演化方法分别生成了两组甲虫形状序列。从结果中可以明显看出,甲虫的主体由三个部分组成。在该形状演化过程中,能够轻松识别出甲虫身体的结构;而在高斯平滑过程中,身体结构逐渐丢失,在演化过程中难以识别。
此外,该方法对某些类型的噪声具有较强的鲁棒性。在大多数情况下,噪声与形状边界上曲率值较高的点相对应。由于该方法首先去除具有高曲率的线段,因此在演化过程开始时就能将噪声从形状中去除。
彩色纹理模型
在图像识别和建模的众多应用中,如图像分类、分割、基于内容的图像检索(CBIR)、图像增强或恢复等,逼真的纹理模型起着至关重要的作用。虚拟或增强现实系统也需要物体表面覆盖逼真的自然彩色纹理,以增强虚拟场景的真实感。纹理合成方法主要分为智能采样和基于模型的方法。
这里提出了一种基于离散分布混合的生成式多光谱纹理模型。该模型将统计纹理属性表示为乘积分