多元逻辑回归:计算机输出解读与实际应用
1. 两个连续自变量的逻辑回归分析
在一项针对腹部手术后并发症风险的研究中,对连续的 170 名患者进行了分析。使用 APACHE 风险评分(基于临床体征和症状的评分系统,范围从 0 到 27)评估患者术后并发症风险,同时测量了患者的体重(单位:kg)。研究的结果是术后并发症为轻度还是重度,这里两个输入变量均为连续变量。
1.1 模型解读
- 对于固定体重的患者,APACHE 评分每增加 1 分,发生严重并发症的优势比(OR)增加 1.9,且具有高度统计学意义(P < 0.001)。
- 体重每增加 1 kg,并发症风险增加 4%。
1.2 计算机输出结果
以下是拟合逻辑回归模型的 R 代码输出:
Deviance residuals:
Min 1Q Median 3Q Max
-2.3510 -0.4662 -0.1278 0.3743 2.4150
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.83907 1.65729 -5.333 9.64e-08
apache 0.64105 0.10578 6.060 1.36e-09
weight 0.03879 0.01431 2.711 0.00671
---
(Dispersion param