week9
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
19、并行计算术语与符号详解
本博客详细解析了并行计算中的常见术语、符号及其应用场景,涵盖内存管理、缓存策略、计算模式、算法实现以及性能优化等多个方面。通过深入解析这些核心概念,帮助读者更好地理解和应用并行计算技术,以提升系统性能与效率。原创 2025-08-09 00:43:14 · 6 阅读 · 0 评论 -
18、MPI命令总结与Fortran和C语言通信详解
本文详细总结了MPI并行计算中的常用命令,包括点对点通信、集体通信、归约操作、通信器和组操作等核心功能,并深入解析了Fortran和C语言在跨语言通信中的差异,如参数传递、数组存储、复数类型和指针支持等。同时,文章提供了C调用Fortran例程及Fortran调用C例程的具体示例,并展示了MPI操作和跨语言通信的流程图。最后,给出了MPI编程和Fortran与C通信的操作建议与示例步骤,帮助开发者构建高效的并行计算程序。原创 2025-08-08 12:19:05 · 7 阅读 · 0 评论 -
17、浮点运算的Altivec内建函数及相关命令详解
本文详细介绍了Altivec内建函数在单精度浮点运算中的应用,包括比较、逻辑、算术和加载存储操作。同时,还总结了OpenMP和MPI在并行计算中的常用命令和使用方法,适用于高效数值处理和并行编程。原创 2025-08-07 11:40:12 · 6 阅读 · 0 评论 -
16、SSE 浮点运算内建函数详解
本文详细解析了SSE浮点运算相关的内建函数,包括布尔逻辑、加载存储、向量比较、类型转换以及算术运算等常用操作。通过具体代码示例展示了如何使用这些函数进行高效浮点计算,并提供了性能优化建议、应用场景及常见错误处理。SSE内建函数能够充分发挥硬件并行能力,显著提升大规模浮点运算的效率,适用于图形处理、科学计算、音频处理等多个领域。原创 2025-08-06 16:43:15 · 5 阅读 · 0 评论 -
15、并行计算中的多种算法与工具应用
本文介绍了并行计算中的多种算法与工具应用,包括基于MPI的三维快速傅里叶变换(FFT)和蒙特卡罗(MC)积分方法,以及科学计算工具包PETSc的使用。通过具体的代码示例和数值实验,展示了这些算法和工具的实现方式和性能特点。同时,还提供了多个练习题及其详细分析,涵盖有效带宽测试、并行积分、矩阵向量运算、线性方程组求解等内容。最后总结了不同算法的优势与注意事项,帮助读者深入理解并行计算的核心技术和实践方法。原创 2025-08-05 14:16:33 · 4 阅读 · 0 评论 -
14、MIMD计算中的矩阵向量乘法与FFT算法解析
本文详细解析了MIMD计算环境中矩阵向量乘法和FFT算法的并行实现方法。通过MPI和PBLAS两种方式实现矩阵向量乘法,并对它们的性能特点和适用场景进行了对比分析。同时,介绍了MPI实现的二维FFT算法及其复杂度分析与优化思路。文中提供了具体的代码示例和使用说明,帮助读者在分布式内存环境中高效实现这些计算任务。总结了影响性能的关键因素,包括通信开销、负载平衡、数据分布以及硬件环境等,为后续研究和实际应用提供了指导方向。原创 2025-08-04 15:16:47 · 5 阅读 · 0 评论 -
13、利用PBLAS和BLACS进行矩阵与向量运算
本文介绍了在分布式内存计算机中,利用PBLAS和BLACS进行高效的矩阵与向量运算。内容涵盖并行批处理系统(PBS)命令、编译和运行脚本、ScaLAPACK软件层次结构、向量与矩阵的分布方式,以及基本向量操作的实现方法。通过这些工具和技术,可以有效提升分布式环境下科学计算的性能与准确性。原创 2025-08-03 09:13:15 · 5 阅读 · 0 评论 -
12、OpenMP与MPI并行计算:原理、实践与性能分析
本文详细探讨了OpenMP和MPI在并行计算中的应用,涵盖共享内存与分布式内存编程模型。内容包括OpenMP在矩阵向量乘法和FFT中的实现,MPI在分布式系统中的消息传递机制,以及两者结合使用的场景。文章还分析了影响并行程序性能的关键因素,并提供了优化策略。通过实际代码示例和性能测试,帮助读者深入理解并行编程的核心原理与实践技巧。原创 2025-08-02 14:06:00 · 5 阅读 · 0 评论 -
10、SIMD编程:从基础到FFT应用
本文介绍了SIMD编程的基础知识及其在Intel SSE和Apple/Motorola Altivec平台上的应用。内容涵盖数据对齐的重要性、基本计算操作如SDOT和ISAMAX的实现,以及快速傅里叶变换(FFT)在不同硬件上的优化策略。通过性能对比,展示了SSE和Altivec在计算效率上的显著优势,并提供了编程练习帮助读者掌握SIMD编程技巧。原创 2025-07-31 10:12:20 · 5 阅读 · 0 评论 -
9、线性代数基础示例与多项式求值方法
本文深入探讨了科学计算和工程应用中的线性代数基础示例与多项式求值方法,涵盖了矩阵乘法、LU分解、多项式求值、三对角线性系统的求解等核心算法。详细分析了各种算法的复杂度、并行性以及在不同计算环境下的优化策略,提供了多个C语言实现示例。文章还讨论了多右侧项三对角系统的解法、非单位步长对硬件性能的影响以及原地有序二进制基FFT算法的设计与实现。通过合理选择算法和优化策略,可以显著提升大规模数据计算的效率。原创 2025-07-30 16:35:16 · 3 阅读 · 0 评论 -
8、SIMD技术:内存延迟、架构与操作优化
本文详细探讨了SIMD技术在处理内存延迟、不同处理器架构优化、分支执行、归约和搜索操作等方面的应用。通过具体的编程示例,如矩阵乘法和高斯消元法,展示了如何充分发挥硬件的并行计算能力以提升程序性能。同时,文章还分析了SIMD技术的性能加速比,介绍了其在图形处理、信号处理和科学计算等领域的应用场景,并展望了未来SIMD技术的发展趋势。原创 2025-07-29 09:28:14 · 4 阅读 · 0 评论 -
7、单指令多数据(SIMD)技术详解
本文详细解析了单指令多数据(SIMD)技术的基本概念和应用,包括向量寄存器、内存访问、数据依赖、流水线和循环展开等核心内容。文章还通过线性代数操作、递归公式、多项式求值、均匀随机数生成和快速傅里叶变换(FFT)等实际示例,展示了SIMD在提升计算效率方面的强大能力。同时,结合不同硬件平台(如英特尔SSE、AMD 3DNow!、Cray SV-1等),探讨了如何根据硬件特性进行优化,以实现最佳性能。原创 2025-07-28 10:16:47 · 8 阅读 · 0 评论 -
6、快速傅里叶变换与蒙特卡罗方法详解
本博客详细探讨了快速傅里叶变换(FFT)的对称性与优化策略,以及蒙特卡罗(MC)方法在随机数生成、非均匀分布采样、接受/拒绝策略和朗之万模拟中的应用。内容涵盖FFT的实序列优化、MC方法的并行特性、不同随机数生成器的选择、Box-Muller变换、接受/拒绝方法的适用性分析,以及朗之万方程在高维物理系统中的模拟。此外,还提供了多种方法的流程图、对比分析和实际应用建议,适用于科学计算、数值模拟和高性能计算领域。原创 2025-07-27 15:34:28 · 4 阅读 · 0 评论 -
5、线性代数中的稀疏矩阵、迭代方法与快速傅里叶变换
本文深入探讨了线性代数中的稀疏矩阵、迭代方法和快速傅里叶变换(FFT)的基本概念、算法原理及其在科学计算和工程应用中的实践。文章详细分析了求解泊松方程时不同预条件子的迭代步骤差异,介绍了稀疏矩阵的存储格式(如CSR)及其并行化策略,讨论了预条件化的实现与优化,并对FFT的数学基础、递归结构和并行思路进行了阐述。此外,还展示了这些算法在信号处理、图像压缩和偏微分方程求解等领域的实际应用。最后,文章展望了这些方法在未来高性能计算和新兴技术领域的发展潜力。原创 2025-07-26 12:06:10 · 8 阅读 · 0 评论 -
4、线性代数中的矩阵求解方法深度解析
本文深入解析了线性代数中的矩阵求解方法,重点探讨了分块算法、平稳迭代方法(如雅可比迭代、高斯-赛德尔迭代、SOR和SSOR)以及克里洛夫子空间方法(如GMRES和PCG)的原理、应用场景和优缺点。通过实验数据分析和代码示例,展示了不同方法在性能、收敛性和内存消耗方面的差异。同时,文章提供了方法选择的对比表格和实际应用案例,帮助读者根据具体问题选择合适的求解策略。原创 2025-07-25 14:39:48 · 4 阅读 · 0 评论 -
3、多处理器、网络与线性代数计算
本文围绕多处理器系统、网络配置以及线性代数计算展开详细介绍。内容涵盖向量处理与循环展开、常见网络结构及其适用场景、线性代数的基本操作和存储方式、BLAS的发展与性能分析,以及使用LAPACK进行高斯消元法求解的方法。通过对比经典高斯消元法与分块高斯消元法,分析其在不同规模矩阵计算中的性能差异。最后总结了相关技术的发展现状,并展望了未来的优化方向和应用趋势。原创 2025-07-24 15:23:29 · 4 阅读 · 0 评论 -
2、高性能计算中的内存与编程优化
本文深入探讨了高性能计算中的内存与编程优化技术,涵盖了摩尔定律、缓存层次结构、缓存未命中、内存访问延迟、流水线操作、循环展开、并行模式以及线性代数子程序等内容。通过分析不同机器的缓存架构和优化策略,介绍了如何提升程序性能,包括缓存写入策略、指令调度、寄存器重命名和预取技术。此外,还讨论了分布式内存和共享内存机器的并行编程模式,以及常用并行线性代数库如BLACS、PBLAS和ScaLAPACK的应用。文章旨在帮助开发者和研究人员更好地理解和应用高性能计算环境下的内存管理和编程优化策略。原创 2025-07-23 15:09:35 · 5 阅读 · 0 评论 -
1、并行计算入门指南
本文是一篇并行计算的入门指南,深入探讨了并行计算的基本概念、组织架构、操作步骤以及不同并行模式的特点与应用场景。文章详细介绍了指令级并行(SIMD)、共享内存并行和消息传递并行(MIMD)三种主要模式,并结合线性代数、快速傅里叶变换和蒙特卡罗模拟等实际应用案例,展示了并行计算的操作流程与优化方法。同时,文章还分析了并行计算中的关键挑战,如数据通信延迟、负载均衡和编程复杂度,并提出了相应的解决方案。最后,展望了并行计算未来的发展趋势,包括硬件技术进步、算法优化和跨学科应用。原创 2025-07-22 16:51:07 · 6 阅读 · 0 评论