已接收的LLM相关的推荐系统论文整理

本文探讨了大型语言模型在图数据理解、在线职业推荐、生成式对抗网络、结构化数据处理、公平推荐和冷启动场景的应用。研究者们展示了如何利用这些模型进行可解释性提升和性能优化,同时关注模型的公平性和局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AAAI 2024

  • Exploring Large Language Model for Graph Data Understanding in Online Job Recommendations

  • Fine-tuning Large Language Model based Explainable Recommendation with Explainable Quality Reward

  • LLMRG: Improving Recommendations through Large Language Model Reasoning Graphs

  • Enhancing Job Recommendation through LLMbased Generative Adversarial Networks

WSDM 2024

Let the LLMs Talk: Simulating Human-to-Human Conversational QA via Zero-Shot LLM-to-LLM Interactions(阿姆斯特丹,港中文)【让LLM对话:通过零样本LLM-LLM交互模拟人与人的对话QA】

GPT4Table: Can Large Language Models Understand Structured Table Data? A Benchmark and Empirical Study(新加坡国立,微软)【GPT4Table:大型语言模型能理解结构化表数据吗?基准与实证研究】

LLMRec: Large Language Models with Graph Augmentation for Recommendation(港大,百度)【LLm为推荐模型做数据增广】

ONCE: Boosting Content-based Recommendation with Both Open- and Closed-source Large Language Models(香港理工)【ONCE:用开源和闭源大型语言模型促进基于内容的推荐】

Temporal Blind Spots in Large Language Models【大型语言模型中的时间盲点】
 

RecSyS 2023

Tutorial on Large Language Models for Recommendation.

LLM4Rec: Large Language Models for Recommendation via A Lightweight Tuning Framework

Can ChatGPT Make Fair Recommendation? A Fairness Evaluation Benchmark for Recommendation with Large Language Model

Large Language Model Augmented Narrative Driven Recommendations

Large Language Models are Competitive Near Cold-start Recommenders for Language- and Item-based Preferences

### 大型语言模型 (LLM) 推荐系统中的中文综述论文 目前,在大型语言模型 (LLM) 领域,尤其是其应用于推荐系统的场景下,已经有许多研究探讨了如何利用 LLM 提升推荐效果以及解决其中的技术难题。然而,针对中文综述性的论文较少被提及于公开资料中[^2]。 尽管如此,可以从现有英文文献出发来了解相关主题的核心内容,并推测可能存在的中文综述文章方向。例如,有研究表明在将 LLM 应用于推荐系统时存在三大核心挑战:效率、有效性和伦理问题。这些问题不仅适用于英文环境下的研究,同样也适用于中文语境下的工作。因此,可以预期一些高质量的中文综述可能会围绕以下几个方面展开: 1. **技术背景** 描述传统统计语言模型(SLM)向现代预训练语言模型(PLM)演化的历程及其对推荐系统的影响。特别是当 PLM 参数规模达到百亿级别以上时所展现出来的涌现能力对于个性化推荐的意义[^3]。 2. **应用场景分析** 结合具体案例说明 LLM 如何改进不同类型的推荐服务,比如商品推荐、新闻资讯分发等实际业务场景中的表现提升情况。 3. **关键技术难点剖析** 对应前述提到过的三重障碍——计算成本控制、预测准确性提高以及隐私保护等问题进行全面梳理并提供解决方案建议。 4. **未来发展趋势展望** 基于当前研究成果探索后续发展方向,包括但不限于多模态融合处理、跨领域迁移学习等方面的可能性讨论。 如果希望获取更具体的某篇已发表之中文综述,则可以通过访问学术数据库如 CNKI 或 Wanfang Data 进行关键词检索操作。“大型语言模型”、“推荐系统”作为组合查询项能够帮助快速定位目标文档集合。 以下是实现简单爬虫脚本的一个例子用来自动化搜索过程: ```python import requests from bs4 import BeautifulSoup def search_paper(keyword, pages=1): base_url = f"http://www.cnki.net/index.aspx" headers = {'User-Agent': 'Mozilla/5.0'} results = [] for page in range(1, pages + 1): params = { "q": keyword, "p": str(page), } response = requests.get(base_url, headers=headers, params=params) soup = BeautifulSoup(response.text, "html.parser") items = soup.find_all("div", class_="result-item") for item in items: title = item.find("a").text.strip() link = item.find("a")["href"] abstract = item.find("span", class_="abstract").text.strip() result = {"title": title, "link": link, "abstract": abstract} results.append(result) return results if __name__ == "__main__": keywords = ["大型语言模型", "推荐系统"] combined_keyword = "+".join(keywords) papers = search_paper(combined_keyword, pages=2) for paper in papers: print(f"{paper['title']}\n{paper['link']}\nAbstract:{paper['abstract']}\n\n") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值