AAAI 2024
-
Exploring Large Language Model for Graph Data Understanding in Online Job Recommendations
-
Fine-tuning Large Language Model based Explainable Recommendation with Explainable Quality Reward
-
LLMRG: Improving Recommendations through Large Language Model Reasoning Graphs
-
Enhancing Job Recommendation through LLMbased Generative Adversarial Networks
WSDM 2024
Let the LLMs Talk: Simulating Human-to-Human Conversational QA via Zero-Shot LLM-to-LLM Interactions(阿姆斯特丹,港中文)【让LLM对话:通过零样本LLM-LLM交互模拟人与人的对话QA】
GPT4Table: Can Large Language Models Understand Structured Table Data? A Benchmark and Empirical Study(新加坡国立,微软)【GPT4Table:大型语言模型能理解结构化表数据吗?基准与实证研究】
LLMRec: Large Language Models with Graph Augmentation for Recommendation(港大,百度)【LLm为推荐模型做数据增广】
ONCE: Boosting Content-based Recommendation with Both Open- and Closed-source Large Language Models(香港理工)【ONCE:用开源和闭源大型语言模型促进基于内容的推荐】
Temporal Blind Spots in Large Language Models【大型语言模型中的时间盲点】
RecSyS 2023
Tutorial on Large Language Models for Recommendation.
LLM4Rec: Large Language Models for Recommendation via A Lightweight Tuning Framework
Can ChatGPT Make Fair Recommendation? A Fairness Evaluation Benchmark for Recommendation with Large Language Model
Large Language Model Augmented Narrative Driven Recommendations
Large Language Models are Competitive Near Cold-start Recommenders for Language- and Item-based Preferences